数据集(data set)
记录的集合,假如我们用3个特征,分别为色泽,根蒂,响声来描述西瓜的特点,并且拿到了基于这3个特征的10万条记录,其中一条记录的取值为:
色泽=光亮,根蒂=坚硬,响声=清亮
如果记录到.csv文件中,这个文件的结构可以记为: fruit[100000][3] ,这样一个二维数组,行数为10万,列数为3(因为有3个特征)。
示例(instance)
每条记录是关于一个事件或对象的描述,也称为样本,比如以上其中一条记录
色泽=光亮,根蒂=坚硬,响声=清亮
这个看做是一个实例
属性(attribute)
反映事件或对象在某方面的表现或性质的事项,例如色泽,根蒂,响声等,又称为特征(feature)。
属性上的取值,如青绿,浊响等,称为属性值(attribute value)。
样本空间(sample space)
又称为属性空间(attribute space),或输入空间。它可以理解为训练数据中实际出现的所有属性值构成的集合空间,如上文中提到的10万条西瓜记录,每条记录有3个属性取值,组成了一个fruit[100000][3] 的样本空间。和它有点类似的一个概念叫做假设空间(hypothetical space),它是理论上的所有可能属性值构成的集合空间。
特征向量(feature vector)
假如将色泽,根蒂,敲声三个属性作为三个坐标轴x1, x2, x3,每个西瓜对应一个空间点(一个坐标向量),每个这种示例称为一个特征向量,记为
(x1, x2, x3 )
维数(dimensionality)
每个示例包含的属性个数,如上文中提到的描述西瓜的3个特征色泽,根蒂,响声,这个10万行的数据集的维数是3,这是机器学习中需要理解的重要概念。
标记(label)
关于示例结果的信息,比如判断一个西瓜是好瓜,那么这个西瓜便拥有了标记示例,这个西瓜便成了样例(example)。一般用 Xi , yi 表示第 i 个样例,其中 yi 是示例 Xi 的标记。
学习(learning)
从数据中学得模型的过程,又称为训练(training)。正如上文所示,10万条西瓜数据集,根据它的三个特征,和每条特征的标记,经过计算最后得到了一个 f,通过这个 f 我们能预测第1万零一个西瓜是否是好瓜,这个过程被称为学习。
训练数据 (training data)
训练过程中使用的数据,其中每个样本称为一个训练样本(training sample),训练样本组成的集合称为训练集(training set)。通过这些训练数据通过学习,最终得出一个f,也就是我们学到的模型。与之相对应的是测试数据,为了测试通过训练数据得到的f准确度能高不高,我们特意预留出一些数据用来专门测试用,这部分数据就被称为测试数据。
回归(regression)
如果预测的是连续值,例如预测西瓜的成熟度 ,它必然是个大于0的小数值,比如成熟度为0.9,0.75,抑或是根据房屋面积,使用年限两个特征预测某个房屋的价值,类似这种预测称为回归。回归有些不好理解,可以理解为拟合吧,根据已有数据集,得到一条曲线f,然后再来一个Xm,带到 f 中,得到ym 。
分类(classification)
如果我们要预测的是离散值,等于0,1,2,3等这类离散值,例如 好瓜,坏瓜,称此类学习任务为分类。如果分类的结果为两类,又称此分类为二分类,通常称其中一个为正类(positive class),另一个为反类(negative class)。它还有一个很奇怪的名字,叫逻辑回归,虽然是带着回归二字,实际是分类,注意此处。
聚类(clustering)
没有标记的记录集,并且我们还想学习这类数据集,比如想从里头挖出点有用的东西来。然后我们根据某些特征和算法将训练中的西瓜分成若干组,自动形成了几簇,这些簇可能对应一些潜在的概念,比如浅色瓜,深色瓜,本地瓜,这些概念我们都是事先不知道的。聚类的常用的算法自己查阅吧,资料有很多:无监督学习