• 方程求根——二分法


    二分法求根主要应用了区间套定理,这一算法实现简单且结果也迭代的较好,但对于复杂函数其结果不理想

      1.代码

    %%二分法求根
    %%f为函数表达式,interval0为初始区间,epsilon为控制精度
    function RD = Roots_dichotomy(f,interval0,epsilon)
    x_low = interval0(1);x_up = interval0(2);x_ave = (x_low+x_up)/2;
    
    %%作图
    t = x_low:(x_up-x_low)/1000:x_up;
    T = subs(f,t);
    y0 = zeros(1,max(size(t)));
    h=figure;
    set(h,'color','w');
    plot(t,T,'r',t,y0,'b');
    grid on
    legend('T:函数图像','y0:y = 0');
    xlabel('x shaft');ylabel('y shaft');
    title('函数图像');
    syms x;
    
    %%限定实数解及只在区间中的实数解出现在图象上
    X_real = double(solve([f],[0]));
    for i = 1:max(size(X_real))
        if isreal(X_real(i)) == 1
            x_real(i) = X_real(i);
        else 
            x_real(i) =0;
        end
    end
    x_real(x_real==0)=[];
    for i = 1:max(size(x_real))
        text(x_real(i),0,['(',num2str(x_real(i)),',',num2str(0),')'],'color',[0.02 0.79 0.99]);
    end
    
    
    f_low = subs(f,x_low);f_up = subs(f,x_up);
    ub = 100;e=floor(abs(log(epsilon)));
    X_up(1) = x_up;X_low(1) = x_low;X_ave(1) = x_ave;
    if f_low*f_up > 0
        disp('请修改区间!');
        interval0 = input('输入区间为:');
        RD = Roots_dichotomy(f,interval0,epsilon);
    else 
        %%二分算法
        for i = 1:1:ub
            f_low = subs(f,x_low);
            f_up = subs(f,x_up);
            f_ave = subs(f,x_ave);
            if f_low*f_ave <0
                x_up = x_ave;
                x_ave = (x_low+x_up)/2;
            elseif f_ave*f_up < 0
                x_low = x_ave;
                x_ave = (x_low+x_up)/2;
            end
            delta = x_up -x_low;
            X_up(i+1) = x_up;X_low(i+1) = x_low;X_ave(i+1) = x_ave;
            if abs(delta) < epsilon
                break;
            end
        end
        disp('迭代次数为');
        i
        disp('输出结果依次是下界迭代值,中值迭代值,上界迭代值');
        RD = vpa([X_low;X_ave;X_up],e);
    end
    end
    

      2.例子

    clear all
    clc
    syms x;
    f = x^3+log(x);
    epsilon=1e-6;
    interval0 = [0.1,1];
    
    %%二分法
    Y = Roots_dichotomy(f,interval0,epsilon)
    

      结果如下

    迭代次数为
    i =
        20
    输出结果依次是下界迭代值,中值迭代值,上界迭代值
    Y =
    [  0.1,  0.55,   0.55,  0.6625,   0.6625,  0.690625,  0.7046875,   0.7046875,    0.7046875,     0.7046875,      0.7046875,       0.7046875,       0.7046875,       0.7046875,       0.7046875,       0.7046875, 0.7047012329102, 0.7047080993652, 0.7047080993652, 0.7047080993652, 0.7047089576721]
    [ 0.55, 0.775, 0.6625, 0.71875, 0.690625, 0.7046875, 0.71171875, 0.708203125, 0.7064453125, 0.70556640625, 0.705126953125, 0.7049072265625, 0.7047973632812, 0.7047424316406, 0.7047149658203, 0.7047012329102, 0.7047080993652, 0.7047115325928,  0.704709815979, 0.7047089576721, 0.7047093868256]
    [  1.0,   1.0,  0.775,   0.775,  0.71875,   0.71875,    0.71875,  0.71171875,  0.708203125,  0.7064453125,  0.70556640625,  0.705126953125, 0.7049072265625, 0.7047973632812, 0.7047424316406, 0.7047149658203, 0.7047149658203, 0.7047149658203, 0.7047115325928,  0.704709815979,  0.704709815979]
    

      

  • 相关阅读:
    【Windows核心编程】重载类成员函数new / new[] / delete / delete[]
    【数据结构和算法】 O(1)时间取得栈中的最大 / 最小元素值
    路由器与交换机做链路聚合
    怎么样判断两个IP地址是否在同一个网段
    sqlite常用的命令-增删改查
    5G时代的智慧灯杆需要哪种网关?
    什么是边缘计算网关?
    5G/4G工业智能网关在工业物联网的必要性
    基于5G/4G网关的冷冻设备远程监测及故障预警系统
    工业5G网关配置POE技术的优势
  • 原文地址:https://www.cnblogs.com/guliangt/p/12119198.html
Copyright © 2020-2023  润新知