算法分析
- 算法分析即指对一个算法所需要的资源进行预测
- 内存,通信带宽或者计算机硬件等资源偶尔是我们关心的
- 通常,资源是指我们希望测度的计算时间
RAM模型
-
分析一个算法之前,需要建立一个实现技术的模型,包括描述所用资源及其代价的模型
-
RAM模型:单处理器,随机存取RAM
- 指令一条接一条地执行,没有并发操作(单处理器)
- 包含真实计算机中的常见指令:算术,数据移动,控制
- 每条指令所需时间为常量
- 数据类型为整型和浮点型
-
灰色领域:真实计算机包含的其他指令,不是常量时间的那种。没有对存储器层次进行建模。
算法运行时间
-
运行时间取决于输入的内容
- 相同规模(n),不同的序列有不同的运行时间,比如逆序序列或者顺序序列
-
运行时间取决于数据的规模
- (n)越大,时间自然越多
- 一般来说,算法所需时间与输入规模同步增长,因此一个程序的运行时间是其输入的函数
-
通常我们关心运行时间的上限(最坏情况)
-
注:我们分析时间时要使用机器独立的时间单位,即不考虑机器不同带来的影响。
插入排序时间分析
- 假设每行每次执行的时间为常量(c_i)
for j: 2 to length[A]:
do key = A[j]
i = j-1
while i>0 and A[i]>key
do A[i+1] = A[i]
i = i-1
A[i+1] = key
-
(cost:c_1;times:n) (包含跳出循环的那次)
注:for循环是刚刚进入循环时就要判断一次条件,然后再执行
j--
,再判断条件,直到判断条件不满足,不进入循环。假设循环(n)个元素,实际执行(n+1) 次比较 -
(cost:c_2;times:n-1)
-
(cost:c_3;times:n-1)
-
(cost:c_4;times:sumlimits_{j=2}^nt_j, t_j) 为一次for循环中while循环的判断次数
-
(cost:c_5;times:sumlimits_{j=2}^n(t_j-1),)
-
(cost:c_6;times:sumlimits_{j=2}^n(t_j-1))
-
(cost:c_7;times:n-1)
(t_j) 取决于与序列排序情况有关,如果已经排好序了,(A[j-1])总是小于key了,所以每次for循环只算判断了一次while,总共(n-1)次,如果是逆序,前一个总比后一个大,满足while条件,每次for循环中while判断次数为(t_j=j-1+1=j) ,总共(sumlimits_{j=2}^n{t_j}) 次。
总的运行时间:
(T(n)=c_1n+c_2(n-1)+c_3(n-1)+c_4sumlimits_{j=2}^n{t_j}+c_5sumlimits_{j=2}^n(t_j-1)+c_6sumlimits_{j=2}^n(t_j-1)+c_7(n-1))
渐进分析
- 如果一个算法的最坏情况运行时间要比另一个算法的低,我们就常常认为它的效率更高。那么如何比较两个算法的运行时间呢?
- 渐进表示:忽略每条语句的真实代价,而用常量(c_i) 表示,只考虑公式中的最高次项(低阶项相对来说不太重要),忽略最高次项的常数系数(对于增长率而言,系数是次要的)
- 在输入的规模较小时,由于常数项和低次项的影响,这种看法有时可能是不对的。对规模足够大的输入来说,这种看法总是对的。
- 虽然有时候能够精确确定一个算法的运行时间,但通常没有必要。(在RAM模型下,可以精确计算T(n))
- 渐近分析更有意义(对不是很小的输入规模而言,从渐进意义上说更有效的算法就是最佳的选择)
渐进符号
(Theta(g(n))={f(n):存在正常数c_1,c_2,n_0,对所有的nge{n_0},有0le{c_1g(n)le{f(n)}le{c_2g(n)}}})
-
(Theta(g(n))) 是一个集合,记号(f(n)=Theta(g(n))) 是指(f(n)) 是这个集合中的一个元素,不是指相等
-
具体来说:当(n)大于某个数时,一个与(n)有关的函数(f(n)),不管(n)如何增长,其大小总是被限制到(c_1g(n))和 (c_2g(n))之间。
-
在时间复杂度分析中,(f(n))即我们所要求的(T(n)),当我们不需要精确地求出(T(n))时,我们只需要大致知道它随(n)增长时,其值的上下界如何,即这个算法的运行时间肯定不会超过某个时间,不会低于某个时间。
-
**比如:(T(n)=Theta(n^2)) 表示该算法的运行时间不会超过(c_1n^2) ,不会低于(c_2n^2) **
- (Theta(n^2)) 是所有满足该性质的算法的(T(n)) 的集合
(O(g(n))={f(n):存在正常数c,n_0,对所有的nge{n_0},有0le{f(n)}le{cg(n)}})
- 描述了算法运行的上界,不会超过常数倍的(g(n)) ,即最坏情况
- 比如 (T(n)=O(n^2)) 表示该算法运行时间不会超过(cn^2)
(Omega(g(n))={f(n):存在正常数c,n_0,对所有的nge{n_0},有0le{cg(n)}le{f(n)}})
- 描述算法运行的下界,表示不低于常数倍(cg(n))
一个渐进正函数中的低阶项和最高阶项的系数在决定渐进确界(上界、下界)时可以被忽略
分治算法分析
-
分治法在每一层递归上都有三个步骤:
分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
-
另外,分解到什么规模就够了呢?即分解到子问题可以找到一个方法,使得在线性时间/常量时间内就可以解决。比如归并排序问题,排序到什么时候最容易解决呢?当然是分解到序列内只有一个元素
-
分治法的递归式
- (T(n)) 为规模为(n)的问题的运行时间,(D(n))为分解问题所需时间,(C(n)) 为合并解所需时间
- 使用分治法的归并排序的递归式
- 第一个式子就是分解到什么规模可以通过(O(1))时间来解决,第二个式子描述的就是子问题的运行时间加上归并所需要的时间
递归式求解
注意问题:
- 假设自变量为整数
- 忽略边界条件
- 忽略上取整,下取整的影响,先假设总能够被整除,等得到结果后再确定他们是否重要
代换法
- 猜测解的形式
- 用数学归纳法找出使解真正有效的常数
- 仅仅适用于解的形式很容易猜的时候
递归树
- 将递归式转换成树形结构,树中的节点代表在不同递归层次付出的代价,利用对和式限界的技术解出递归式
主方法
- 给出递归形式(T(n)=aT(n/b)+f(n))的界,其中(a≥1,b>1,f(n))是给定的函数