• 机器学习之--线性回归sigmoid函数分类


    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt

    import random
    #sigmoid函数定义
    def sigmoid(x):
    # print('sigmoid:',x,1.0 / (1+math.exp(-x)))
    return 1.0 / (1+ np.exp(-x))
    #模拟数据
    x = [-2,6,-2,7,-3,3,0,8,1,10,2,12,2,5,3,6,4,5,2,15,1,10,4,7,4,11,0,3,-1,4,1,5,3,11,4,5]
    x = x * 100
    #转换成两列的矩阵
    x = np.array(x).reshape(-1,2)
    # print('x:',x,len(x))
    x1 = x[:,0]
    x2 = x[:,1]
    # print(x1,len(x1))
    # print(x2)
    y = [1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0,1,1]
    y = y * 100
    y = np.array(y).reshape(-1,1)
    y1 = y[:,0]
    print('len(y):',len(y))

    # a = 0.1 #学习步长 alpha
    o0 = 1 #线性参数
    o1 = 1
    o2 = 1
    O0=[]
    O1=[]
    O2=[]
    q=[]
    result = []
    #随机梯度下降求参
    dataindex = list(range(len(y)))
    for i in range(len(y)):
    a = 6/(i+1) +0.01
    num = random.randint(0, len(dataindex) - 1)
    index = dataindex[num]
    # print('index:',index)
    # print(x[i],x[i][0])
    w = o0 + o1 * x[index][0] +o2 * x[index][1]
    # print('w:',w)
    h = sigmoid(w)
    error = y[index] - h
    q.append(error)
    # print(num,len(num_list))
    del (dataindex[num])
    # print(h,y[i])
    o0 = o0 + a * error * 1                #梯度上升求最大似然估计的参数值
    o1 = o1 + a * error * x[index][0]
    o2 = o2 + a * error * x[index][1]
    O0.append(o0)
    O1.append(o1)
    O2.append(o2)
    print(o0,o1,o2)
    #测试参数
    test_x = [-2,6,-2,7,-3,3,0,8,1,10,2,12,2,5,3,6,4,5,2,15,1,10,4,7,4,11,0,3,-1,4,1,5,3,11,4,5]
    test_y = [1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0,1,1]
    yescount = 0
    for i in range(len(test_y)):
    test_w = o0 + o1 * x[i][0] +o2 * x[i][1]
    test_h = sigmoid(test_w)
    print('测试:',test_w,y[i])
    if test_h < 0.5:
    result = 0
    else:
    result = 1
    if result == y[i]:
    yescount += 1
    # print('正确')
    print('总共{}个,正确了{}个,正确率为:{}'.format(len(test_y),yescount,yescount/len(test_y)))

    #参数求好了画图
    fig = plt.figure()
    #第一幅数据散点和回归分割线
    line_x = np.arange(-4,4,0.1) #横坐标
    line_y = (-o0-o1*line_x) / o2 #分割线
    ax2 = fig.add_subplot(221)
    ax2.scatter(x1,x2,10*(y1+1),10*(y1+1)) #测试数据的散点图
    plt.grid()
    plt.plot(line_x,line_y,'y-')
    #第二幅参数o1 o2 o3 的变化图
    ax3 = fig.add_subplot(222)
    plt.grid()
    plt.plot(range(len(y)),O0,'r-')
    plt.plot(range(len(y)),O1,'y-')
    plt.plot(range(len(y)),O2,'b-')
    #第三幅数据误差error图
    ax4 = fig.add_subplot(223)
    plt.plot(range(len(y)),q,'b-')
    plt.show()
     

  • 相关阅读:
    JavaScript获取数组索引
    jQuery实现购物车效果
    JavaScript随机验证码
    javascript头像上传
    JavaScript中null和undefined的区别
    cookie、sessionStorage和localStorage区别
    Cookie封装
    封装好的Ajax
    通过反射实现javaweb项目中权限的刷新
    java中反射的理解
  • 原文地址:https://www.cnblogs.com/cxhzy/p/10676317.html
Copyright © 2020-2023  润新知