• DataStructure.BloomFilter


    Bloom Filters Ref[1]

    1. 简介

    Bloom filter(布隆过滤器;有更好的或正确的翻译,告诉我) 是一个数据结构,该数据结构快速并且内存高效,它可以告诉你某个元素是否在集合中。

    作为高效的代价,Bloom filter是存在概率的数据结构:它告诉我们某个元素一定不在集合中,或者可能在集合中。

    Bloom filter的基本数据结构是Bit Vector。

    在Ref[1]中有简单形象的例子来说明Bloom Filter。

    1.1 Hash Functions

    在Bloom Filter中的hash function应该是独立的并且是均匀分布的。应该选用尽可能快的hash function。(sha1虽然被广泛使用,

    但是在Bloom Filter的实现中并不是好的选择)。

    hash function有:murmur, fnv, Jenkins Hashes。

    1.2 How big should I make my Bloom filter?

    false positive rate: (1-e-kn/m)k

    false positive rate: 是指假肯定率(Q[1]: false positive rate 是指???)

    k: hash function的个数

    m: filter中的bits数

    n: 已经被插入到filter里的元素个数 

    1.3 应该使用多少hash function? 

    hash function越多,bloom filter越慢,bloom filter就越容易被填满。如果hash function太少,就会得到太多的假肯定(false positive)。

    由于在创建filter时必须为k选择一个值,你需要对n的变动范围进行界定。一旦范围确定了,仍然需要选择一个潜在的m和k。

    幸运地,给定m和n,我们有一个函数来选择k的最佳值:(m/n)ln(2)

    接下来选定bloom filter的尺寸/大小:

      1. 选择一个n的范围值

      2. 为m选择一个值

      3. 计算k的最佳值

      4. 根据n,m,k来计算error rate。如果该值不可接受,需要返回第二步并修改m的值。

    1.4 How fast and space efficient is a Bloom filter?

    一个给定有m个bits和k个hash function的Bloom filter,插入和成员身份的测试是O(k)

    2. Bloom Filter的应用案例 

    [Todo] 


    Reference

    1. Bloom Filters by Example

    http://billmill.org/bloomfilter-tutorial/

    1.1 http://blip.tv/pycon-us-videos-2009-2010-2011/pycon-2011-handling-ridiculous-amounts-of-data-with-probabilistic-data-structures-4899047

    1.2 Network Application of Bloom Filter: A Survey

    http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=6CA79DD1A90B3EFD3D62ACE5523B99E7?doi=10.1.1.127.9672&rep=rep1&type=pdf

    1.3 Less Hashing, Same Performance

    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.579&rank=1

    1.4 Scalable Bloom Filters [AAAA]

    http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf

    1.5 

    https://sites.google.com/site/murmurhash/

    1.6 

    http://isthe.com/chongo/tech/comp/fnv/

    1.7 

    http://www.burtleburtle.net/bob/hash/doobs.html

    2. Bloom Filter  [AAAAA]

    http://en.wikipedia.org/wiki/Bloom_filter

    ---
  • 相关阅读:
    redis的发布与订阅机制
    三次握手与四次挥手详解
    super的实例及实现原理
    【node.js】入门篇
    简单理解什么是数据库CDC?(以mysql为例)
    Java小工具类(一)json的K-V转换为Java类属性
    linux系统文件拷贝命令rsync
    linux系统配置常用命令top
    关于ganymed-ssh2版本262和build210的SCPClient类的区别
    阿里巴巴java-数据库开发手册(2020泰山版)
  • 原文地址:https://www.cnblogs.com/cwgk/p/4024853.html
Copyright © 2020-2023  润新知