• 电磁场12.EMF的产生与涡电流


    产生EMF的三种方式

    如下图,矩形的导电回路连接一个平面,长宽分别为 (x,y) ,一个均匀分布的磁场 (B) 穿过平面,且与平面的法向量的夹角为 ( heta) .

    则磁通量定义为BdA在这个开曲面上的积分

    [egin{align} phi _B&=underset{ ext{open} ext{surface}}{int } overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dA}}\ &=x y B cos( heta) end{align} ]

    根据法拉第定律,这个量对时间的导数,就是电动势 (EMF)

    那么我们可以采用多种方式,

    1. 取磁场的变化,即 (frac{ ext{dB}}{ ext{dt}})
    2. 取面积的变化,即 (frac{ ext{dA}}{ ext{dt}})
    3. 取夹角的变化,即 (frac{{d heta}}{ ext{dt}})

    改变磁场产生EMF的方法我们已经讨论过,这里讨论夹角和面积。

    改变夹角—发电机

    如图,矩形的导电回路连接一个平面,长宽分别为 (x,y) ,以x/2为轴,角频率 (omega) 旋转平面,在 (t=0) 时刻,平面法向量与磁场夹角为0,那么旋转过程中,夹角为 (omega)t 。如果初始时刻夹角为 (omega_0) ,则旋转过程中夹角为 (omega_0+omega t) .这里讨论初始夹角为0的情况。

    则此时磁通量为

    [egin{align} phi _B&=underset{ ext{open} ext{surface}}{int } overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dA}}\ &=x y B cos(omega t) end{align} ]

    取导数可得

    [egin{align} frac{ ext{d$phi $}_B}{ ext{dt}} &=-x y B omega sin(omega t)\ &=epsilon(t) end{align} ]

    可见,此时感生电动势随着时间变化。

    因为感应电流等于感生电动势除以回路的电阻,所以感应电流也是随着时间变化的,即

    [I(t) =frac{epsilon (t)}{R} ]

    式子中的 (sin(omega t)) 告诉我们,当我们旋转这个回路的时候,电流将会以 正弦 的形式交替变化。

    并且旋转的频率越快,感生电动势越大。

    如果这个回路变为两匝,那么EMF也会变为2倍,因为两匝存在上下两个平面,磁场线穿过了两个平面,面积加倍,EMF变为两倍。EMF与匝数成正比。

    面积、磁感应强度越大,旋转角频率越大,EMF越大,这就是交流发电机的基本思想。(虽然实际发电机角频率是一定的)

    改变面积

    还是一个矩形闭合导线回路,长为 (x),不同的是一边用一个可以滑动的长为 (l) 导体棒代替,导体棒以速度 (v) 运动,所以 (x) 是变的。

    假设磁场垂直纸面向外

    磁通量为

    [egin{align} phi _B&=underset{ ext{open} ext{surface}}{int } overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dA}}\ &=x l B cos(0)\ &=x l B end{align} ]

    求导,位移导数就是速度,得

    [egin{align} frac{ ext{d$phi $}_B}{ ext{dt}} &=-frac{ ext{dx}}{ ext{dt}} l B\ &=-v l B end{align} ]

    我们也可以通过做功导出EMF。

    如果只看导体棒,在磁场中其所受到的洛伦兹力 (F_l) 与B、I垂直, 在这种情况下

    [F_l=I l B ]

    如果将导体棒向右拉,磁通量减小,根据楞次定律,感应电流方向应该是自上往下,根据右手定则洛伦兹力 (F_l) 向左,我们施加的力要克服 (F_l) 做功,大小一样,而且是正功。我们做的功将会转变为EMF,产生感应电流作用在回路电阻上,以热量的形式散发掉。

    功率 (P_l) 为(单位时间内做的功,所以x/t=v)

    [P_l=F_l v ]

    功率又等于

    [P_l=epsilon I ]

    可得

    [epsilon I =I l B v ]

    [|epsilon| = l B v ]

    我们只关心EMF的大小。因为楞次定律总可以告诉我们方向。

    改变导体棒的运动方向,感应电流也随之反向,洛伦兹力也反向,所以我们总是做正功。

    涡电流与磁制动

    以下来自维基百科:https://en.wikipedia.org/wiki/Eddy_current

    (机翻)一块金属板(C)在一个固定的磁铁下面向右移动。磁体北极N的磁场(B,绿色箭头)穿过薄片。由于金属在移动,通过薄片某一特定区域的磁通量也在变化。在薄片在磁铁前缘(左侧)下面移动的部分,通过薄片上某一点的磁场随着它越来越靠近磁铁而增加,(frac{dB}{dt}>0) ,根据法拉第感应定律,这将在薄片上形成一个绕磁场线逆时针方向的圆形电场,这个电场产生了逆时针方向的电流,如图红色线。在薄片底部的磁铁尾缘(右侧),磁场通过薄片上的一个给定点是减少的,因为它是远离磁铁的移动,(frac{dB}{dt}<0) ,在薄片中顺时针方向诱导第二股涡流。

    根据安培电路定律,薄片中的每一个圆电流都产生一个反向磁场(蓝色箭头)。根据楞次定律,通过薄片的反向场与磁场的变化相反。在磁铁的前缘(左边),根据右手规则,逆时针方向的电流创造了一个指向上方的磁场,与磁铁的磁场相反,在薄片和磁铁的前缘之间产生排斥力。相反,在尾部边缘(右侧),顺时针方向的电流引起一个指向下方的磁场,与磁铁的磁场方向相同,在薄片和磁铁尾部边缘之间产生一个吸引力。这两种力都阻碍了板块的运动。

    在移动的过程中,会消耗动能,产生热量。她穿过磁场时,显然不会比没有磁场移动的更快。我们称为“磁制动

    消耗的热能越多,制动越快,减小涡流,就可以减小损耗。(P=epsilon I=I^{2}R)

  • 相关阅读:
    经典回溯问题--八皇后dfs递归回溯求解【DFS】
    CSP认证考试(第九次)第一题
    C++字符串和数字格式转化(使用sprintf()和sscanf()函数)
    2016蓝桥杯C++A组第六题 寒假作业【暴力搜索】
    先序非递归建立二叉树
    sqlsrv数据库复杂语句1
    tp5域名配置
    JavaScript使用 value 属性
    数据库随机查询6条数据
    文件目录问题
  • 原文地址:https://www.cnblogs.com/ckk-blog/p/14419800.html
Copyright © 2020-2023  润新知