本文为转载内容,方便自己记忆,原网址请点击下面链接
动态规划,从新手到专家
前言
本文翻译自TopCoder上的一篇文章:Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的一些理解。水平有限,还望指摘。
前言_
我们遇到的问题中,有很大一部分可以用动态规划(简称DP)来解。 解决这类问题可以很大地提升你的能力与技巧,我会试着帮助你理解如何使用DP来解题。 这篇文章是基于实例展开来讲的,因为干巴巴的理论实在不好理解。
注意:如果你对于其中某一节已经了解并且不想阅读它,没关系,直接跳过它即可。
简介(入门)
什么是动态规划,我们要如何描述它?
动态规划算法通常基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度, 因此它比回溯法、暴力法等要快许多。
现在让我们通过一个例子来了解一下DP的基本原理。
首先,我们要找到某个状态的最优解,然后在它的帮助下,找到下一个状态的最优解。
“状态”代表什么及如何找到它?
“状态”用来描述该问题的子问题的解。原文中有两段作者阐述得不太清楚,跳过直接上例子。
如果我们有面值为1元、3元和5元的硬币若干枚,如何用最少的硬币凑够11元? (表面上这道题可以用贪心算法,但贪心算法无法保证可以求出解,比如1元换成2元的时候)
首先我们思考一个问题,如何用最少的硬币凑够i元(i<11)?为什么要这么问呢? 两个原因:1.当我们遇到一个大问题时,总是习惯把问题的规模变小,这样便于分析讨论。 2.这个规模变小后的问题和原来的问题是同质的,除了规模变小,其它的都是一样的, 本质上它还是同一个问题(规模变小后的问题其实是原问题的子问题)。
好了,让我们从最小的i开始吧。当i=0,即我们需要多少个硬币来凑够0元。 由于1,3,5都大于0,即没有比0小的币值,因此凑够0元我们最少需要0个硬币。 (这个分析很傻是不是?别着急,这个思路有利于我们理清动态规划究竟在做些什么。) 这时候我们发现用一个标记来表示这句“凑够0元我们最少需要0个硬币。”会比较方便, 如果一直用纯文字来表述,不出一会儿你就会觉得很绕了。那么, 我们用d(i)=j来表示凑够i元最少需要j个硬币。于是我们已经得到了d(0)=0, 表示凑够0元最小需要0个硬币。当i=1时,只有面值为1元的硬币可用, 因此我们拿起一个面值为1的硬币,接下来只需要凑够0元即可,而这个是已经知道答案的, 即d(0)=0。所以,d(1)=d(1-1)+1=d(0)+1=0+1=1。当i=2时, 仍然只有面值为1的硬币可用,于是我拿起一个面值为1的硬币, 接下来我只需要再凑够2-1=1元即可(记得要用最小的硬币数量),而这个答案也已经知道了。 所以d(2)=d(2-1)+1=d(1)+1=1+1=2。一直到这里,你都可能会觉得,好无聊, 感觉像做小学生的题目似的。因为我们一直都只能操作面值为1的硬币!耐心点, 让我们看看i=3时的情况。当i=3时,我们能用的硬币就有两种了:1元的和3元的( 5元的仍然没用,因为你需要凑的数目是3元!5元太多了亲)。 既然能用的硬币有两种,我就有两种方案。如果我拿了一个1元的硬币,我的目标就变为了: 凑够3-1=2元需要的最少硬币数量。即d(3)=d(3-1)+1=d(2)+1=2+1=3。 这个方案说的是,我拿3个1元的硬币;第二种方案是我拿起一个3元的硬币, 我的目标就变成:凑够3-3=0元需要的最少硬币数量。即d(3)=d(3-3)+1=d(0)+1=0+1=1. 这个方案说的是,我拿1个3元的硬币。好了,这两种方案哪种更优呢? 记得我们可是要用最少的硬币数量来凑够3元的。所以, 选择d(3)=1,怎么来的呢?具体是这样得到的:d(3)=min{d(3-1)+1, d(3-3)+1}。
OK,码了这么多字讲具体的东西,让我们来点抽象的。从以上的文字中, 我们要抽出动态规划里非常重要的两个概念:状态和状态转移方程。
上文中d(i)表示凑够i元需要的最少硬币数量,我们将它定义为该问题的”状态”, 这个状态是怎么找出来的呢?我在另一篇文章 动态规划之背包问题(一)中写过: 根据子问题定义状态。你找到子问题,状态也就浮出水面了。 最终我们要求解的问题,可以用这个状态来表示:d(11),即凑够11元最少需要多少个硬币。 那状态转移方程是什么呢?既然我们用d(i)表示状态,那么状态转移方程自然包含d(i), 上文中包含状态d(i)的方程是:d(3)=min{d(3-1)+1, d(3-3)+1}。没错, 它就是状态转移方程,描述状态之间是如何转移的。当然,我们要对它抽象一下,
d(i)=min{ d(i-vj)+1 },其中i-vj >=0,vj表示第j个硬币的面值;
有了状态和状态转移方程,这个问题基本上也就解决了。当然了,Talk is cheap,show me the code!
伪代码如下:
下图是当i从0到11时的解:
从上图可以得出,要凑够11元至少需要3枚硬币。
此外,通过追踪我们是如何从前一个状态值得到当前状态值的, 可以找到每一次我们用的是什么面值的硬币。比如,从上面的图我们可以看出, 最终结果d(11)=d(10)+1(面值为1),而d(10)=d(5)+1(面值为5),最后d(5)=d(0)+1 (面值为5)。所以我们凑够11元最少需要的3枚硬币是:1元、5元、5元。
注意:原文中这里本来还有一段的,但我反反复复读了几遍, 大概的意思我已经在上文从i=0到i=3的分析中有所体现了。作者本来想讲的通俗一些, 结果没写好,反而更不好懂,所以这段不翻译了。
初级
上面讨论了一个非常简单的例子。现在让我们来看看对于更复杂的问题, 如何找到状态之间的转移方式(即找到状态转移方程)。 为此我们要引入一个新词叫递推关系来将状态联系起来(说的还是状态转移方程)
OK,上例子,看看它是如何工作的。
一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度。 (讲DP基本都会讲到的一个问题LIS:longest increasing subsequence)
正如上面我们讲的,面对这样一个问题,我们首先要定义一个“状态”来代表它的子问题, 并且找到它的解。注意,大部分情况下,某个状态只与它前面出现的状态有关, 而独立于后面的状态。
让我们沿用“入门”一节里那道简单题的思路来一步步找到“状态”和“状态转移方程。
。。。。。。。csdn的markdown出现了bug后面的编辑不了了,请自行查看原网页。