• 论文阅读 | Interpretable Neural Predictions with Differentiable Binary Variables


    论文地址:https://arxiv.org/abs/1905.08160

    作者 : Joost Bastings, Wilker Aziz, Ivan Titov

    机构:University of Amsterdam

    研究的问题:

    同样是关注神经网络可解释性的一篇论文,主要是分类任务中的可解释性。主要方法是使用联合训练的两个神经网络,一个网络从文本中提取基本原理,另一个网络学习从基本原理中做出预测。基本原理就是对原文简明扼要的陈述。

    研究方法:

    Kumaraswamy分布:模型的关键在于Kumaraswamy分布,它是在(0,1)区间上一个两个参数的分布,使用表示,其中a,b>0。其图像如下:

     

    上图中的虚线表示的是Kuma(0.5,0.5)的分布,它和beta分布比较接近。其公式如下:

     

    时,

    作者这里对Kumaraswamy分布做了扩展,让它包括0和1.定义如下:

     

     其中l<0,r>1

    过程描述如下,首先在(0,1)之间采样得到一个数字,通过转化为一个Kumaraswamy变量,之后通过线性变化,最后在[0,1]这个闭区间内得到结果,简记为

    可以注意到,当t=1和t=1时,它是不可微的。不过对于两个点,被采样到的概率是0.

    示例:情感分析

    下面以情感分析任务为例来介绍,设x是一个句子,y是五类情感标签。模型包括:

     

     其中的形状参数是由神经网络预测得到的。

    首先指定一个架构来参数化潜在的selector,决定限制输入的哪些部分用于分类。

     

     其中,emb表示embedding层,birnn是encoder。

    之后使用采样的z来调整分类器的输入。

     

     然后,通过蒙特卡洛采样得到梯度的估计:

     

    表示逐元素的从均分布到Kuma分布的转换。

    实验结果:

     

    评价:

    主要方法可以概括为,提出了一种提取基本原理的方法,为了重参数化梯度估计、支持二元输出,引入了Kuma分布。

  • 相关阅读:
    Java高级特性 第11节 JUnit 3.x和JUnit 4.x测试框架
    Java高级特性 第10节 IDEA和Eclipse整合JUnit测试框架
    Java高级特性 第9节 Socket机制
    Java面向对象和高级特性 项目实战(一)
    Java高级特性 第8节 网络编程技术
    Java高级特性 第7节 多线程
    二十一、字符串类的创建
    二十二、经典问题解析二
    二十一、C++中的临时对象
    二十、对象的销毁
  • 原文地址:https://www.cnblogs.com/bernieloveslife/p/12748483.html
Copyright © 2020-2023  润新知