http://www.cnblogs.com/markliu/archive/2012/05/18/2508392.html
题意:有N个农场,P条无向路连接。要从1到N不重复走T条路,求所经过的直接连接两个区域的道路中最长道路中的最小值,。
构图:源点向1连容量T的边。二分最小长度,长度超过mid的边容量为0,否则为1,用最大流判可行性。
注意:1.该题有重边,切忌用邻接矩阵删除重边(重边要用邻接表来处理以保留)。2.无向图在addedge中要进行处理(处理方式见代码)。
// File Name: 2455.cpp // Author: zlbing // Created Time: 2013/3/3 16:46:48 #include<iostream> #include<string> #include<algorithm> #include<cstdlib> #include<cstdio> #include<set> #include<map> #include<vector> #include<cstring> #include<stack> #include<cmath> #include<queue> using namespace std; #define CL(x,v); memset(x,v,sizeof(x)); #define INF 0x3f3f3f3f #define LL long long #define MAXN 205 #define MAXM 40005 struct Edge{ int from,to,cap,flow; }; bool cmp(const Edge& a,const Edge& b){ return a.from < b.from || (a.from == b.from && a.to < b.to); } struct Dinic{ int n,m,s,t; vector<Edge> edges; vector<int> G[MAXN]; bool vis[MAXN]; int d[MAXN]; int cur[MAXN]; void init(int n){ this->n=n; for(int i=0;i<=n;i++)G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap){ edges.push_back((Edge){from,to,cap,0}); edges.push_back((Edge){to,from,cap,0});//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0 m=edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS(){ CL(vis,0); queue<int> Q; Q.push(s); d[s]=0; vis[s]=1; while(!Q.empty()){ int x=Q.front(); Q.pop(); for(int i=0;i<G[x].size();i++){ Edge& e=edges[G[x][i]]; if(!vis[e.to]&&e.cap>e.flow){ vis[e.to]=1; d[e.to]=d[x]+1; Q.push(e.to); } } } return vis[t]; } int DFS(int x,int a){ if(x==t||a==0)return a; int flow=0,f; for(int& i=cur[x];i<G[x].size();i++){ Edge& e=edges[G[x][i]]; if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){ e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if(a==0)break; } } return flow; } //当所求流量大于need时就退出,降低时间 int Maxflow(int s,int t,int need){ this->s=s;this->t=t; int flow=0; while(BFS()){ CL(cur,0); flow+=DFS(s,INF); if(flow>need)return flow; } return flow; } //最小割割边 vector<int> Mincut(){ BFS(); vector<int> ans; for(int i=0;i<edges.size();i++){ Edge& e=edges[i]; if(vis[e.from]&&!vis[e.to]&&e.cap>0)ans.push_back(i); } return ans; } void Reduce(){ for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow; } void ClearFlow(){ for(int i = 0; i < edges.size(); i++) edges[i].flow = 0; } }; Edge E[MAXM]; Dinic solver; int main(){ int n,m,t; while(~scanf("%d%d%d",&n,&m,&t)) { int minn=INF,maxn=-1; for(int i=0;i<m;i++) { scanf("%d%d%d",&E[i].from,&E[i].to,&E[i].cap); minn=min(minn,E[i].cap); maxn=max(maxn,E[i].cap); } int L=minn,R=maxn; while(L<R){ solver.init(n); int mid=L+(R-L+1)/2; for(int i=0;i<m;i++) { if(E[i].cap<=mid) solver.AddEdge(E[i].from,E[i].to,1); } if(solver.Maxflow(1,n,INF)>=t)R=mid-1; else L=mid; } printf("%d\n",L+1); } return 0; }