SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量
通过MySQL保存kafka的偏移量,完成直连方式读取数据
使用scalikeJDBC,访问数据库。
1. ScalikeJDBC
ScalikeJDBC 是一款Scala 开发者使用的简洁 DB 访问类库,它是基于 SQL 的,使用者只需要关注 SQL 逻辑的编写,所有的数据库操作都交给 ScalikeJDBC。这个类库内置包含了JDBC API,并且给用户提供了简单易用并且非常灵活的 API。并且,QueryDSL(通用查询查询框架)使你的代码类型安全的并且可重复使用。我们可以在生产环境大胆地使用这款 DB 访问类库。
2.配置文件
//配置数据库信息
//使用IDEA,在resources文件夹下新建文件File文件名为application.conf
db.default.driver="com.mysql.jdbc.Driver"
db.default.url="jdbc:mysql://hadoop01:3306/kafkaOffset?characterEncodeing=utf-8"
db.default.user="root"
db.default.password="root"
3.导入依赖的jar包
<!--Maven依赖-->
<!--通过mysql保存偏移量-->
<dependency>
<groupId>com.typesafe</groupId>
<artifactId>config</artifactId>
<version>1.3.1</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc_2.11</artifactId>
<version>2.5.0</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-core_2.11</artifactId>
<version>2.5.0</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-config_2.11</artifactId>
<version>2.5.0</version>
</dependency>
4.源码测试
import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.KafkaCluster.Err
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaCluster, KafkaUtils, OffsetRange}
import org.apache.spark.streaming.{Duration, StreamingContext}
import scalikejdbc.{DB, SQL}
import scalikejdbc.config.DBs
/*
将偏移量保存到MySQL中
*/
object SparkStreamingOffsetMySql {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("medd").setMaster("local[2]")
val ssc = new StreamingContext(conf,Duration(5000))
//配置一系列基本配置
val groupid = "GPMMCC"
val topic = "mysqlDemo"
val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
// val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
val topics = Set(topic)
//设置kafka的参数
val kafkaParams = Map(
"metadata.broker.list"->brokerList,
"group.id"->groupid,
"auto.offset.reset"->kafka.api.OffsetRequest.SmallestTimeString
)
//加载配置 application.conf
DBs.setup()
//不需要查询zk中的offset啦,直接查询MySQL中的offset
val fromdbOffset:Map[TopicAndPartition,Long]=
DB.readOnly{
implicit session=>{
//查询每个分组下面的所有消息
SQL(s"select * from offset where groupId = '${groupid}'" +
//将MySQL中的数据赋值给元组
s"").map(m=>(TopicAndPartition(m.string("topic"),m.string("partitions").toInt),m.string("untilOffset").toLong))
.toList().apply()
}.toMap //最后toMap ,应为前面的返回值已经给定
}
//创建一个DStream,用来获取数据
var kafkaDStream : InputDStream[(String,String)] = null
//从MySql中获取数据进行判断
if(fromdbOffset.isEmpty){
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,
StringDecoder](ssc,kafkaParams,topics)
}else{
//1 不能重复消费
//2 保证偏移量
var checkOffset = Map[TopicAndPartition,Long]()
//加载kafka的配置
val kafkaCluster = new KafkaCluster(kafkaParams)
//首先获得kafka中的所有的topic和partition Offset
val earliesOffset: Either[Err, Map[TopicAndPartition, KafkaCluster.LeaderOffset]
] = kafkaCluster.getEarliestLeaderOffsets(fromdbOffset.keySet)
//然后开始比较大小,用mysql中的offset和kafka中的offset进行比较
if(earliesOffset.isRight){
//去到需要的 大Map
//物取值
val tap: Map[TopicAndPartition, KafkaCluster.LeaderOffset] =
earliesOffset.right.get
//比较,直接进行比较大小
val checkOffset = fromdbOffset.map(f => {
//取kafka中的offset
//进行比较,不需要重复消费,取最大的
val KafkatopicOffset = tap.get(f._1).get.offset
if (f._2 > KafkatopicOffset) {
f
} else {
(f._1, KafkatopicOffset)
}
})
checkOffset
}
val messageHandler=(mmd:MessageAndMetadata[String,String])=>{
(mmd.key(),mmd.message())
}
//不是第一次启动的话 ,按照之前的偏移量取数据的偏移量
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder
,StringDecoder,(String,String)](ssc,kafkaParams,checkOffset
,messageHandler)
}
var offsetRanges = Array[OffsetRange]()
kafkaDStream.foreachRDD(kafkaRDD=>{
offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
val map: RDD[String] = kafkaRDD.map(_._2)
map.foreach(println)
//更新偏移量
DB.localTx(implicit session =>{
//去到所有的topic partition offset
for (o<- offsetRanges){
/*SQL("update offset set groupId=? topic=?,partition=?," +
"untilsOffset=?").bind(groupid,o.topic,o.partition,o.untilOffset).update().apply()*/
SQL("replace into offset(groupId,topic,partitions,untilOffset) values(?,?,?,?)").bind(
groupid,o.topic,o.partition.toString,o.untilOffset.toString
).update().apply()
}
})
})
ssc.start()
ssc.awaitTermination()
}
}