• 洛谷


    https://www.luogu.org/problemnew/show/P1390

    求 $sumlimits_{i=1}^{n}sumlimits_{j=1}^{m} gcd(i,j) $

    不会,看题解:

    类似求gcd为p的求法:

    $ f(n) = sumlimits_{i=1}^{n}sumlimits_{j=1}^{m} gcd(i,j) =sumlimits_{i=1}^{N} d sumlimits_{i=1}^{n}sumlimits_{j=1}^{m} [gcd(i,j)==d] $

    提出 (d) :
    $ f(n) =sumlimits_{i=1}^{N} d sumlimits_{i=1}^{lfloor frac{n}{d} floor }sumlimits_{j=1}^{ lfloorfrac{m}{d} floor } [gcd(i,j)==1] $

    用 $sumlimits_{d|n}mu(d)=[n==1] $ 替换,反演:
    $ f(n) = sumlimits_{i=1}^{N} d sumlimits_{k=1}^{N} mu(k) lfloorfrac{n}{kd} floor lfloorfrac{m}{kd} floor $

    (T=kd) :
    $ f(n) = sumlimits_{T=1}^{N} sumlimits_{d|T} d mu(frac{T}{d}) lfloorfrac{n}{T} floor lfloorfrac{m}{T} floor $

    提出 (T)
    $ f(n) = sumlimits_{T=1}^{N} lfloorfrac{n}{T} floor lfloorfrac{m}{T} floor sumlimits_{d|T} d mu(frac{T}{d}) $

    因为:
    $sumlimits_{d|n}frac{mu(d)}{d}=frac{varphi(n)}{n} $

    $ f(n) = sumlimits_{T=1}^{N} lfloorfrac{n}{T} floor lfloorfrac{m}{T} floor varphi(T) $

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    
    #define N 2000005
    int phi[N],pri[N],cntpri=0;
    bool notpri[N];
    
    void sieve_phi(int n)
    {
        notpri[1]=phi[1]=1;
        for (int i=2;i<=n;i++)
        {
            if (!notpri[i]) pri[++cntpri]=i,phi[i]=i-1;
            for (int j=1;j<=cntpri&&i*pri[j]<=n;j++)
            {
                notpri[i*pri[j]]=1;
                if (i%pri[j]) phi[i*pri[j]]=phi[i]*phi[pri[j]];
                else {phi[i*pri[j]]=phi[i]*pri[j];break;}
            }
        }
    }
    
    int main(){
        int n;
        cin>>n;
        sieve_phi(n);
        ll ans=0;
        for(int i=1;i<=n;i++){
            ans+=1ll*phi[i]*(n/i)*(n/i);
        }
        cout<<(ans-(1ll*(1+n)*n)/2)/2<<endl;
    }
    
    

    另一种奇怪的做法:
    $ f(n) = sumlimits_{d=1}^{n} d sumlimits_{i=1}^{n}sumlimits_{j=1}^{i-1} [gcd(i,j)==d] $

    提d:
    $ sumlimits_{d=1}^{n} d sumlimits_{i=1}^{frac{n}{d}}sumlimits_{j=1}^{i-1} [gcd(i,j)==1] $

    后面是欧拉函数的定义:
    $ sumlimits_{d=1}^{n} d sumlimits_{i=2}^{frac{n}{d}} varphi(i) $

    这里有个bug是因为1和1互质但是1和1相同,所以要去掉 (varphi(1))

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    
    #define N 2000000+5
    
    int phi[N],pri[N],cntpri=0;
    bool notpri[N];
    
    ll prefix[N];
    
    void sieve_phi(int n) {
        notpri[1]=phi[1]=1;
        prefix[0]=0;
        prefix[1]=1;
        for(int i=2; i<=n; i++) {
            if(!notpri[i])
                pri[++cntpri]=i,phi[i]=i-1;
            for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
                notpri[i*pri[j]]=1;
                if(i%pri[j])
                    phi[i*pri[j]]=phi[i]*phi[pri[j]];
                else {
                    phi[i*pri[j]]=phi[i]*pri[j];
                    break;
                }
            }
            prefix[i]=prefix[i-1]+phi[i];
        }
    }
    
    ll solve(ll n){
        ll ans=0;
        for(int d=1;d<=n;d++){
            ans+=d*((prefix[n/d])-1);
        }
        return ans;
    }
    
    int main() {
        sieve_phi(2000000+1);
        int n;
        while(cin>>n) {
            ll ans=solve(n);
            cout<<ans<<endl;
        }
    }
    
    
  • 相关阅读:
    第一阶段大作业 文件上传格式
    第一阶段大作业 数据字典的修改
    设计模式 C++实现职责链模式 (顺便复习C++)
    Numpy学习
    2019版:第二章:(1)Redis 概述
    第一章:(6)Dubbo 与 SpringBoot 整合
    第一章:(5)Dubbo 监控中心
    2019版:第一章:(2)NOSQL 数据库
    2019版:第二章:(3)Redis 其他相关知识
    2019版:第一章:(1)技术发展
  • 原文地址:https://www.cnblogs.com/Yinku/p/10666135.html
Copyright © 2020-2023  润新知