• LeetCode 437 Path Sum III


    Problem:

    You are given a binary tree in which each node contains an integer value.

    Find the number of paths that sum to a given value.

    The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).

    The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.

    Summary:

    找到二叉树中的子路径条数使得该子路径权值之和与给定和相等。

    Analysis:

    本题参考:http://www.cnblogs.com/grandyang/p/6007336.html

    1. 最直观的思路:通过前序遍历的方式遍历二叉树,每遍历至一个节点,将当前节点的权值记录在数组中,并更新记录当前路径和的变量curSum,同时判断更新后的curSum与    sum是否相等,若相等则res加1。

    此时的curSum为从根节点到当前节点的路径之和。至于这条路径上的子路径是否满足题意,则需将数组中的权值在curSum中一个个减掉,每剪掉一个,判断一次当前权值和是否与sum相等,若相等则res加1。此处需注意不能将数组中的权值完全减掉,最后应保留一个,因为全部去掉所得curSum为0,若题中所给的sum刚好为0,则判断相等,但不符合题意。

     1 /**
     2  * Definition for a binary tree node.
     3  * struct TreeNode {
     4  *     int val;
     5  *     TreeNode *left;
     6  *     TreeNode *right;
     7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     8  * };
     9  */
    10 class Solution {
    11 public:
    12     int pathSum(TreeNode* root, int sum) {
    13         int res = 0;
    14         vector<TreeNode*> vec;
    15         findPath(root, sum, 0, res, vec);
    16         
    17         return res;
    18     }
    19     
    20     void findPath(TreeNode* node, int sum, int curSum, int &res, vector<TreeNode*> &vec) {
    21         if (!node) return;
    22         curSum += node->val;
    23         vec.push_back(node);
    24         
    25         if (sum == curSum) res++;
    26         int tmp = curSum;
    27         for (int i = 0; i < vec.size() - 1; i++) {
    28             tmp -= vec[i]->val;
    29             if (tmp == sum) res++;
    30         }
    31         
    32         findPath(node->left, sum, curSum, res, vec);
    33         findPath(node->right, sum, curSum, res, vec);
    34         
    35         vec.pop_back();
    36     }
    37 };

    2. 优化算法,用hash表记录当前遍历路径中的子路径权值和对应出现的次数。

    1. 若sum为从根节点到某x节点的路径权值和,则遍历至节点x时,当前的路径和curSum恰好与sum相等,则res = m[curSum - sum] = m[0] = 1;
    2. 若sum为某段子路径权值和,如:x1->x2->x3->x4......中sum等于节点x3与节点x4的权值和,即sum = sumx3+x4。则遍历至x2时, m[curSum]++; 处已经记录了m[curSum] = m[sumx1+x2] = 1,便利至x4时curSum = sumx1+x2+x3+x4,则res = m[curSum - sum] = m[sumx1+x2+x3+x4 - sumx3+x4] = m[sumx1+x2] = 1。
     1 class Solution {
     2 public:
     3     int pathSum(TreeNode* root, int sum) {
     4         unordered_map<int, int> m;
     5         m[0] = 1; 
     6         int res = findPath(root, sum, 0, m);
     7         
     8         return res;
     9     }
    10     
    11     int findPath(TreeNode* node, int sum, int curSum, unordered_map<int, int> &m) {
    12         if (!node) return 0;
    13         curSum += node->val;
    14         
    15         int res = m[curSum - sum];
    16         m[curSum]++;
    17         res += (findPath(node->left, sum, curSum, m) + findPath(node->right, sum, curSum, m));
    18         m[curSum]--;
    19         
    20         return res;
    21     }
    22 };

    3. 最简洁的方法,以每一个节点作为路径根节点进行前序遍历,查找每一条路径的权值和与sum是否相等。

     1 class Solution {
     2 public:
     3     int pathSum(TreeNode* root, int sum) {
     4         if (!root) return 0;
     5         int res = findPath(root, 0, sum) + pathSum(root->left, sum) + pathSum(root->right, sum);
     6         return res;
     7     }
     8     
     9     int findPath(TreeNode* node, int curSum, int sum) {
    10         if (!node) return 0;
    11         curSum += node->val;
    12         return (curSum == sum) + findPath(node->left, curSum, sum) + findPath(node->right, curSum, sum);
    13     }
    14 };
  • 相关阅读:
    OpenJudge 2753 菲波那契数列
    Jmeter的介绍、安装及汉化
    spring集成Java性能监控调优工具-Javamelody
    js-xlsx + handsontable + echarts实现excel上传编辑然后显示成图表
    spring mybatis设置SQL语句打印
    Ribbon负载均衡策略详解
    JVM内存结构、Java内存模型以及Java对象模型之间的区别
    Java的自动拆装箱
    elasticsearch集群管理指南
    ElasticSearch最全分词器比较及使用方法
  • 原文地址:https://www.cnblogs.com/VickyWang/p/6038386.html
Copyright © 2020-2023  润新知