思路:
将相交或相切的用并查集维护起来,最后看上表面跟下表面能否在同一个连通块。
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
ll x = 0, f = 1;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-')f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9')
{
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
ll res = 1;
while(b)
{
if(b & 1)res = res * a % p;
a = a * a % p;
b >>= 1;
}
return res;
}
const int inf = 0x3f3f3f3f;
#define PI acos(-1)
const int maxn=5e5+100;
ll n,h,r;
struct node{
ll x,y,z;
}a[maxn];
ll cul(node a,node b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z);
}
int root[maxn];
int Find(int x){
if(x!=root[x]) return root[x]=Find(root[x]);
return root[x];
}
int main(){
int T=read;
while(T--){
n=read,h=read,r=read;
rep(i,1,n){
a[i].x=read,a[i].y=read,a[i].z=read;
}
rep(i,1,n+2) root[i]=i;
rep(i,1,n){
if((a[i].z-r)<=0){
int fx=Find(i),fy=Find(n+1);
if(fx!=fy) root[fx]=fy;
}
if((a[i].z+r)>=h){
int fx=Find(i),fy=Find(n+2);
if(fx!=fy) root[fx]=fy;
}
rep(j,i+1,n){
if(cul(a[i],a[j])<=(2*r)*(2*r)){
int fx=Find(i),fy=Find(j);
if(fx!=fy) root[fx]=fy;
}
}
}
if(Find(n+1)==Find(n+2)) puts("Yes");
else puts("No");
}
return 0;
}