• spark storm 反压


    因特殊业务场景,如大促、秒杀活动与突发热点事情等业务流量在短时间内剧增,形成巨大的流量毛刺,数据流入的速度远高于数据处理的速度,对流处理系统构成巨大的负载压力,如果不能正确处理,可能导致集群资源耗尽最终集群崩溃,因此有效的反压机制(backpressure)对保障流处理系统的稳定至关重要。

    Storm和Spark Streaming都提供了反压机制,实现各不相同

    对于开启了acker机制的storm程序,可以通过设置conf.setMaxSpoutPending参数来实现反压效果,如果下游组件(bolt)处理速度跟不上导致spout发送的tuple没有及时确认的数超过了参数设定的值,spout会停止发送数据,这种方式的缺点是很难调优conf.setMaxSpoutPending参数的设置以达到最好的反压效果,设小了会导致吞吐上不去,设大了会导致worker OOM;有震荡,数据流会处于一个颠簸状态,效果不如逐级反压;另外对于关闭acker机制的程序无效;

    新的storm自动反压机制(Automatic Back Pressure)通过监控bolt中的接收队列的情况,当超过高水位值时专门的线程会将反压信息写到 Zookeeper ,Zookeeper上的watch会通知该拓扑的所有Worker都进入反压状态,最后Spout降低tuple发送的速度。具体实现:

    Spark Streaming程序中当计算过程中出现batch processing time > batch interval的情况时,(其中batch processing time为实际计算一个批次花费时间,batch interval为Streaming应用设置的批处理间隔),意味着处理数据的速度小于接收数据的速度,如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟),可以通过设置参数spark.streaming.receiver.maxRate来限制Receiver的数据接收速率,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming 从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力

    Spark Streaming Backpressure:  根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性"spark.streaming.backpressure.enabled"来控制是否启用backpressure机制,默认值false,即不启用

    Streaming架构如下图所示:

    BackPressure执行过程如下图所示:

     本文转至:https://www.cnblogs.com/barrenlake/p/5349949.html

    3.1 RateController类体系

                    RatenController 继承自StreamingListener. 用于处理BatchCompleted事件。核心代码为:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    **
     * A StreamingListener that receives batch completion updates, and maintains
     * an estimate of the speed at which this stream should ingest messages,
     * given an estimate computation from a `RateEstimator`
     */
    private[streaming] abstract class RateController(val streamUID: Int, rateEstimator: RateEstimator)
    extends StreamingListener with Serializable {
    ……
    ……  /**
       * Compute the new rate limit and publish it asynchronously.
       */
      private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
        Future[Unit] {
          val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
          newRate.foreach { s =>
            rateLimit.set(s.toLong)
            publish(getLatestRate())
          }
        }
      def getLatestRate(): Long = rateLimit.get()
     
      override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
        val elements = batchCompleted.batchInfo.streamIdToInputInfo
        for {
          processingEnd <- batchCompleted.batchInfo.processingEndTime
          workDelay <- batchCompleted.batchInfo.processingDelay
          waitDelay <- batchCompleted.batchInfo.schedulingDelay
          elems <- elements.get(streamUID).map(_.numRecords)
        } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
      }
    }  

    3.2 RateController的注册

                    JobScheduler启动时会抽取在DStreamGraph中注册的所有InputDstream中的rateController,并向ListenerBus注册监听. 此部分代码如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    def start(): Unit = synchronized {
       if (eventLoop != nullreturn // scheduler has already been started
     
       logDebug("Starting JobScheduler")
       eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
         override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
     
         override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
       }
       eventLoop.start()
     
       // attach rate controllers of input streams to receive batch completion updates
       for {
         inputDStream <- ssc.graph.getInputStreams
         rateController <- inputDStream.rateController
       } ssc.addStreamingListener(rateController)
     
       listenerBus.start()
       receiverTracker = new ReceiverTracker(ssc)
       inputInfoTracker = new InputInfoTracker(ssc)
       receiverTracker.start()
       jobGenerator.start()
       logInfo("Started JobScheduler")
     }

    3.3 BackPressure执行过程分析

                    BackPressure 执行过程分为BatchCompleted事件触发时机和事件处理两个过程

    3.3.1 BatchCompleted触发过程

                    对BatchedCompleted的分析,应该从JobGenerator入手,因为BatchedCompleted是批次处理结束的标志,也就是JobGenerator产生的作业执行完成时触发的,因此进行作业执行分析。

                    Streaming 应用中JobGenerator每个Batch Interval都会为应用中的每个Output Stream建立一个Job, 该批次中的所有Job组成一个Job Set.使用JobScheduler的submitJobSet进行批量Job提交。此部分代码结构如下所示

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    /** Generate jobs and perform checkpoint for the given `time`.  */
    private def generateJobs(time: Time) {
      // Set the SparkEnv in this thread, so that job generation code can access the environment
      // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
      // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
      SparkEnv.set(ssc.env)
     
      // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
      // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
      ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
      Try {
        jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
        graph.generateJobs(time) // generate jobs using allocated block
      match {
        case Success(jobs) =>
          val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
          jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
        case Failure(e) =>
          jobScheduler.reportError("Error generating jobs for time " + time, e)
      }
      eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
    }

     其中,sumitJobSet会创建固定数量的后台线程(具体由“spark.streaming.concurrentJobs”指定),去处理Job Set中的Job. 具体实现逻辑为:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    def submitJobSet(jobSet: JobSet) {
      if (jobSet.jobs.isEmpty) {
        logInfo("No jobs added for time " + jobSet.time)
      else {
        listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
        jobSets.put(jobSet.time, jobSet)
        jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
        logInfo("Added jobs for time " + jobSet.time)
      }
    }

    其中JobHandler用于执行Job及处理Job执行结果信息。当Job执行完成时会产生JobCompleted事件. JobHandler的具体逻辑如下面代码所示:

      当Job执行完成时,向eventLoop发送JobCompleted事件。EventLoop事件处理器接到JobCompleted事件后将调用handleJobCompletion 来处理Job完成事件。handleJobCompletion使用Job执行信息创建StreamingListenerBatchCompleted事件并通过StreamingListenerBus向监听器发送。实现如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    private def handleJobCompletion(job: Job, completedTime: Long) {
       val jobSet = jobSets.get(job.time)
       jobSet.handleJobCompletion(job)
       job.setEndTime(completedTime)
       listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
       logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
       if (jobSet.hasCompleted) {
         jobSets.remove(jobSet.time)
         jobGenerator.onBatchCompletion(jobSet.time)
         logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
           jobSet.totalDelay / 1000.0, jobSet.time.toString,
           jobSet.processingDelay / 1000.0
         ))
         listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
       }
       job.result match {
         case Failure(e) =>
           reportError("Error running job " + job, e)
         case _ =>
       }
     }

    3.3.2、BatchCompleted事件处理过程

                    StreamingListenerBus将事件转交给具体的StreamingListener,因此BatchCompleted将交由RateController进行处理。RateController接到BatchCompleted事件后将调用onBatchCompleted对事件进行处理。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
      val elements = batchCompleted.batchInfo.streamIdToInputInfo
     
      for {
        processingEnd <- batchCompleted.batchInfo.processingEndTime
        workDelay <- batchCompleted.batchInfo.processingDelay
        waitDelay <- batchCompleted.batchInfo.schedulingDelay
        elems <- elements.get(streamUID).map(_.numRecords)
      } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
    }

      onBatchCompleted会从完成的任务中抽取任务的执行延迟和调度延迟,然后用这两个参数用RateEstimator(目前存在唯一实现PIDRateEstimator,proportional-integral-derivative (PID) controller, PID控制器)估算出新的rate并发布。代码如下:

    复制代码
      /**
       * Compute the new rate limit and publish it asynchronously.
       */
      private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
        Future[Unit] {
          val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
          newRate.foreach { s =>
            rateLimit.set(s.toLong)
            publish(getLatestRate())
          }
        }
    复制代码

    其中publish()由RateController的子类ReceiverRateController来定义。具体逻辑如下(ReceiverInputDStream中定义):

    复制代码
      /**
       * A RateController that sends the new rate to receivers, via the receiver tracker.
       */
      private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)
          extends RateController(id, estimator) {
        override def publish(rate: Long): Unit =
          ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)
      }
    复制代码

    publish的功能为新生成的rate 借助ReceiverTracker进行转发。ReceiverTracker将rate包装成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint

    1
    2
    3
    4
    5
    6
    /** Update a receiver's maximum ingestion rate */
    def sendRateUpdate(streamUID: Int, newRate: Long): Unit = synchronized {
      if (isTrackerStarted) {
        endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
      }
    }

    ReceiverTrackerEndpoint接到消息后,其将会从receiverTrackingInfos列表中获取Receiver注册时使用的endpoint(实为ReceiverSupervisorImpl),再将rate包装成UpdateLimit发送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子类),来计算出一个固定的令牌间隔。

    其中RateLimiter的updateRate实现如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    /**
      * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
      * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
      *
      * @param newRate A new rate in events per second. It has no effect if it's 0 or negative.
      */
     private[receiver] def updateRate(newRate: Long): Unit =
       if (newRate > 0) {
         if (maxRateLimit > 0) {
           rateLimiter.setRate(newRate.min(maxRateLimit))
         else {
           rateLimiter.setRate(newRate)
         }
       }

     setRate的实现 如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    public final void setRate(double permitsPerSecond) {
        Preconditions.checkArgument(permitsPerSecond > 0.0
            && !Double.isNaN(permitsPerSecond), "rate must be positive");
        synchronized (mutex) {
          resync(readSafeMicros());
          double stableIntervalMicros = TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;  //固定间隔
          this.stableIntervalMicros = stableIntervalMicros;
          doSetRate(permitsPerSecond, stableIntervalMicros);
        }
      }

    到此,backpressure反压机制调整rate结束。

    4.流量控制点

      当Receiver开始接收数据时,会通过supervisor.pushSingle()方法将接收的数据存入currentBuffer等待BlockGenerator定时将数据取走,包装成block. 在将数据存放入currentBuffer之时,要获取许可(令牌)。如果获取到许可就可以将数据存入buffer, 否则将被阻塞,进而阻塞Receiver从数据源拉取数据。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    /**
     * Push a single data item into the buffer.
     */
    def addData(data: Any): Unit = {
      if (state == Active) {
        waitToPush()  //获取令牌
        synchronized {
          if (state == Active) {
            currentBuffer += data
          else {
            throw new SparkException(
              "Cannot add data as BlockGenerator has not been started or has been stopped")
          }
        }
      else {
        throw new SparkException(
          "Cannot add data as BlockGenerator has not been started or has been stopped")
      }
    }

          其令牌投放采用令牌桶机制进行, 原理如下图所示:

    令牌桶机制: 大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。当进行某操作时需要令牌时会从令牌桶中取出相应的令牌数,如果获取到则继续操作,否则阻塞。用完之后不用放回。

      Streaming 数据流被Receiver接收后,按行解析后存入iterator中。然后逐个存入Buffer,在存入buffer时会先获取token,如果没有token存在,则阻塞;如果获取到则将数据存入buffer.  然后等价后续生成block操作。

    本文转自

    https://www.cnblogs.com/barrenlake/p/5349949.html

    https://blog.csdn.net/zengxiaosen/article/details/72822869

  • 相关阅读:
    CMU Database Systems
    Calcite分析
    CMU Database Systems
    CMU Advanced DB System
    笔记
    MyBatis Generator中文文档
    Run Test Case on Spark
    Flex报错Error #2048: 安全沙箱冲突
    看看这个超级有用的一种类型——匿名类型
    Java实战_手把手编写记事本
  • 原文地址:https://www.cnblogs.com/Mr--zhao/p/11398869.html
Copyright © 2020-2023  润新知