• python-pcl简易文档(不包含自建函数与pcl_grabber包)


    转:https://blog.csdn.net/wyqkx/article/details/84188736

    pcl模块

    ├──── pcl.find_library(name)
    None
    ├──── pcl.save(cloud, path, format=None, binary=False)
    Save pointcloud to file.
        Format should be "pcd", "ply", or None to infer from the pathname.
        
    ├──── pcl._infer_format(path, format)
    None
    ├──── pcl._encode(path)
    None
    ├──── pcl.load_XYZRGBA(path, format=None)
    
        Load pointcloud from path.
        Currently supports PCD and PLY files.
        Format should be "pcd", "ply", "obj", or None to infer from the pathname.
        
    ├──── pcl.save_PointNormal(cloud, path, format=None, binary=False)
    
        Save pointcloud to file.
        Format should be "pcd", "ply", or None to infer from the pathname.
        
    ├──── pcl.load_XYZI(path, format=None)
    Load pointcloud from path.
        Currently supports PCD and PLY files.
        Format should be "pcd", "ply", "obj", or None to infer from the pathname.
        
    ├──── pcl.load_PointWithViewpoint(path, format=None)
    
        Load pointcloud from path.
        Currently supports PCD and PLY files.
        Format should be "pcd", "ply", "obj", or None to infer from the pathname.
        
    ├──── pcl.load_XYZRGB(path, format=None)
    
        Load pointcloud from path.
        Currently supports PCD and PLY files.
        Format should be "pcd", "ply", "obj", or None to infer from the pathname.
        
    ├──── pcl.save_XYZRGBA(cloud, path, format=None, binary=False)
    Save pointcloud to file.
        Format should be "pcd", "ply", or None to infer from the pathname.
        
    ├──── pcl.load(path, format=None)
    Load pointcloud from path.
    
        Currently supports PCD and PLY files.
        Format should be "pcd", "ply", "obj", or None to infer from the pathname.
        
    ├──── pcl.RadiusOutlierRemoval
       └──── set_radius_search(self, double radius)
       └──── set_MinNeighborsInRadius(self, int min_pts)
       └──── get_radius_search(self)
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── get_MinNeighborsInRadius(self)
    ├──── pcl.SampleConsensusModelRegistration
    ├──── pcl.OctreePointCloudSearch_PointXYZRGBA
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
       └──── radius_search(self, point, double radius, unsigned int max_nn=0)
    
            Search for all neighbors of query point that are within a given radius
    ├──── pcl.Segmentation
       └──── set_method_type(self, int m)
       └──── set_distance_threshold(self, float d)
       └──── set_MaxIterations(self, int count)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.KdTreeFLANN_PointXYZI
       └──── nearest_k_search_for_point(self, PointCloud_PointXYZI pc, int index, int k=1)
    
            Find the k nearest neighbours and squared distances for the point
            at pc[index]
       └──── nearest_k_search_for_cloud(self, PointCloud_PointXYZI pc, int k=1)
    
            Find the k nearest neighbours and squared distances for all points
            in the pointcloud
    ├──── pcl.StatisticalOutlierRemovalFilter_PointXYZRGB
       └──── set_mean_k(self, int k)
    
            Set the number of points (k) to use for mean distance estimation
       └──── set_negative(self, bool negative)
    
            Set whether the indices should be returned, or all points except the indices
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud_PointXYZRGB pc)
       └──── set_std_dev_mul_thresh(self, double std_mul)
    
            Set the standard deviation multiplier threshold
    ├──── pcl.ConcaveHull_PointXYZRGBA
       └──── set_Alpha(self, double d)
       └──── reconstruct(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.Segmentation_PointXYZI
       └──── set_method_type(self, int m)
       └──── set_distance_threshold(self, float d)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.NormalEstimation
       └──── compute(self)
       └──── set_SearchMethod(self, KdTree kdtree)
       └──── set_RadiusSearch(self, double param)
       └──── set_KSearch(self, int param)
    ├──── pcl.RandomSampleConsensus
       └──── set_DistanceThreshold(self, double param)
       └──── get_Inliers(self)
       └──── computeModel(self)
    ├──── pcl.PointCloud_PointXYZRGB
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 4-tuples
            
       └──── __reduce__(self)
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── _to_ply_file(self, const char *f, bool binary=False)
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── extract(self, pyindices, bool negative=False)
    
            Given a list of indices of points in the pointcloud, return a 
            new pointcloud containing only those points
       └──── make_voxel_grid_filter(self)
    
            Return a pcl
       └──── make_segmenter(self)
    
            Return a pcl
       └──── _from_obj_file(self, const char *s)
       └──── to_file(self, const char *fname, bool ascii=True)
    Save pointcloud to a file in PCD format
       └──── make_passthrough_filter(self)
    
            Return a pcl
       └──── _from_ply_file(self, const char *s)
       └──── make_kdtree_flann(self)
    
            Return a pcl
       └──── _from_pcd_file(self, const char *s)
       └──── resize(self, npy_intp x)
       └──── make_statistical_outlier_filter(self)
    
            Return a pcl
       └──── from_file(self, char *f)
    
            Fill this pointcloud from a file (a local path)
       └──── _to_pcd_file(self, const char *f, bool binary=False)
       └──── to_list(self)
    
            Return this object as a list of 4-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (3-tuple) at the given row/column
            
       └──── make_moving_least_squares(self)
    
            Return a pcl
       └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
    ├──── pcl.OctreePointCloud2Buf_PointXYZRGB
       └──── set_input_cloud(self, PointCloud_PointXYZRGB pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.ConcaveHull
       └──── set_Alpha(self, double d)
       └──── reconstruct(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.OctreePointCloud_PointXYZI
       └──── set_input_cloud(self, PointCloud_PointXYZI pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.ConditionalRemoval
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_KeepOrganized(self, flag)
    ├──── pcl.PointCloud_Normal
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 4-tuples
            
       └──── __reduce__(self)
       └──── to_list(self)
    
            Return this object as a list of 4-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (4-tuple) at the given row/column
            
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── resize(self, npy_intp x)
    ├──── pcl.KdTreeFLANN_PointXYZRGB
       └──── nearest_k_search_for_point(self, PointCloud_PointXYZRGB pc, int index, int k=1)
    
            Find the k nearest neighbours and squared distances for the point
            at pc[index]
       └──── nearest_k_search_for_cloud(self, PointCloud_PointXYZRGB pc, int k=1)
    
            Find the k nearest neighbours and squared distances for all points
            in the pointcloud
    ├──── pcl.OctreePointCloud2Buf
       └──── set_input_cloud(self, PointCloud pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.Vertices
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 3-tuples
            
       └──── to_list(self)
    
            Return this object as a list of 3-tuples
            
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── resize(self, npy_intp x)
    ├──── pcl.PointCloud_PointXYZI
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 4-tuples
            
       └──── __reduce__(self)
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── _to_ply_file(self, const char *f, bool binary=False)
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── extract(self, pyindices, bool negative=False)
    
            Given a list of indices of points in the pointcloud, return a 
            new pointcloud containing only those points
       └──── make_voxel_grid_filter(self)
    
            Return a pcl
       └──── make_segmenter(self)
    
            Return a pcl
       └──── _from_obj_file(self, const char *s)
       └──── to_file(self, const char *fname, bool ascii=True)
    Save pointcloud to a file in PCD format
       └──── make_passthrough_filter(self)
    
            Return a pcl
       └──── _from_ply_file(self, const char *s)
       └──── make_kdtree_flann(self)
    
            Return a pcl
       └──── _from_pcd_file(self, const char *s)
       └──── resize(self, npy_intp x)
       └──── make_statistical_outlier_filter(self)
    
            Return a pcl
       └──── from_file(self, char *f)
    
            Fill this pointcloud from a file (a local path)
       └──── _to_pcd_file(self, const char *f, bool binary=False)
       └──── to_list(self)
    
            Return this object as a list of 4-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (4-tuple) at the given row/column
            
       └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
    ├──── pcl.SampleConsensusModelStick
    ├──── pcl.StatisticalOutlierRemovalFilter_PointXYZI
       └──── set_mean_k(self, int k)
    
            Set the number of points (k) to use for mean distance estimation
       └──── set_negative(self, bool negative)
    
            Set whether the indices should be returned, or all points except the indices
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud_PointXYZI pc)
       └──── set_std_dev_mul_thresh(self, double std_mul)
    
            Set the standard deviation multiplier threshold
    ├──── pcl.OctreePointCloud
       └──── set_input_cloud(self, PointCloud pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.RegionGrowing
       └──── get_SmoothModeFlag(self)
       └──── get_ResidualThreshold(self)
       └──── get_MaxClusterSize(self)
       └──── get_ResidualTestFlag(self)
       └──── get_MinClusterSize(self)
       └──── set_MinClusterSize(self, int min)
       └──── set_CurvatureThreshold(self, float curvature)
       └──── get_CurvatureTestFlag(self)
       └──── get_SmoothnessThreshold(self)
       └──── get_SegmentFromPoint(self, int index)
       └──── set_MaxClusterSize(self, int max)
       └──── set_ResidualThreshold(self, float residual)
       └──── set_SmoothModeFlag(self, bool value)
       └──── set_SearchMethod(self, KdTree kdtree)
       └──── set_ResidualTestFlag(self, bool value)
       └──── set_InputNormals(self, PointCloud_Normal normals)
       └──── get_CurvatureThreshold(self)
       └──── set_SmoothnessThreshold(self, float theta)
       └──── set_NumberOfNeighbours(self, int neighbour_number)
       └──── set_CurvatureTestFlag(self, bool value)
       └──── Extract(self)
       └──── get_NumberOfNeighbours(self)
    ├──── pcl.OctreePointCloudChangeDetector_PointXYZRGBA
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── get_PointIndicesFromNewVoxels(self)
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
    ├──── pcl.EuclideanClusterExtraction
       └──── set_ClusterTolerance(self, double b)
       └──── set_SearchMethod(self, KdTree kdtree)
       └──── set_MinClusterSize(self, int min)
       └──── set_MaxClusterSize(self, int max)
       └──── Extract(self)
    ├──── pcl.VoxelGridFilter
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.OctreePointCloud_PointXYZRGB
       └──── set_input_cloud(self, PointCloud_PointXYZRGB pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.OctreePointCloud2Buf_PointXYZRGBA
       └──── set_input_cloud(self, PointCloud_PointXYZRGBA pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.Segmentation_PointXYZRGB
       └──── set_method_type(self, int m)
       └──── set_distance_threshold(self, float d)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.Segmentation_PointXYZRGBA_Normal
       └──── set_method_type(self, int m)
       └──── get_eps_angle(self)
       └──── get_min_max_opening_angle(self)
       └──── set_distance_threshold(self, float d)
       └──── set_axis(self, double ax1, double ax2, double ax3)
       └──── set_radius_limits(self, float f1, float f2)
       └──── get_axis(self)
       └──── set_max_iterations(self, int i)
       └──── set_min_max_opening_angle(self, double min_angle, double max_angle)
    
            Set the minimum and maximum cone opening angles in radians for a cone model
       └──── set_eps_angle(self, double ea)
       └──── set_normal_distance_weight(self, float f)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.StatisticalOutlierRemovalFilter
       └──── set_mean_k(self, int k)
    
            Set the number of points (k) to use for mean distance estimation
       └──── set_negative(self, bool negative)
    
            Set whether the indices should be returned, or all points except the indices
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud pc)
       └──── set_std_dev_mul_thresh(self, double std_mul)
    
            Set the standard deviation multiplier threshold
    ├──── pcl.SampleConsensusModelLine
    ├──── pcl.VoxelGridFilter_PointXYZI
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.PassThroughFilter_PointXYZRGBA
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new PointCloud_PointXYZRGBA
            
       └──── set_filter_limits(self, float filter_min, float filter_max)
       └──── set_filter_field_name(self, field_name)
    ├──── pcl.OctreePointCloudSearch_PointXYZI
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
       └──── radius_search(self, point, double radius, unsigned int max_nn=0)
    
            Search for all neighbors of query point that are within a given radius
    ├──── pcl.MovingLeastSquares_PointXYZRGB
       └──── set_polynomial_fit(self, bool fit)
    
            Sets whether the surface and normal are approximated using a polynomial,
            or only via tangent estimation
       └──── set_polynomial_order(self, bool order)
    
            Set the order of the polynomial to be fit
       └──── set_search_radius(self, double radius)
    
            Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting
       └──── process(self)
    
            Apply the smoothing according to the previously set values and return
            a new pointcloud
            
    ├──── pcl.PointCloud_PointWithViewpoint
       └──── from_file(self, char *f)
    
            Fill this pointcloud from a file (a local path)
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 6-tuples
            
       └──── __reduce__(self)
       └──── to_list(self)
    
            Return this object as a list of 6-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (6-tuple) at the given row/column
            
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── _from_ply_file(self, const char *s)
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── to_file(self, const char *fname, bool ascii=True)
    
            Save pointcloud to a file in PCD format
       └──── _from_pcd_file(self, const char *s)
       └──── resize(self, npy_intp x)
    ├──── pcl.SegmentationNormal
       └──── set_method_type(self, int m)
       └──── get_eps_angle(self)
       └──── get_min_max_opening_angle(self)
       └──── set_distance_threshold(self, float d)
       └──── set_axis(self, double ax1, double ax2, double ax3)
       └──── set_radius_limits(self, float f1, float f2)
       └──── get_axis(self)
       └──── set_max_iterations(self, int i)
       └──── set_min_max_opening_angle(self, double min_angle, double max_angle)
    
            Set the minimum and maximum cone opening angles in radians for a cone model
       └──── set_eps_angle(self, double ea)
       └──── set_normal_distance_weight(self, float f)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.OctreePointCloud_PointXYZRGBA
       └──── set_input_cloud(self, PointCloud_PointXYZRGBA pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.VoxelGridFilter_PointXYZRGB
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.OctreePointCloudSearch
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── nearest_k_search_for_point(self, PointCloud pc, int index, int k=1)
    
            Find the k nearest neighbours and squared distances for the point
            at pc[index]
       └──── VoxelSearch(self, PointCloud pc)
    
            Search for all neighbors of query point that are within a given voxel
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── nearest_k_search_for_cloud(self, PointCloud pc, int k=1)
    
            Find the k nearest neighbours and squared distances for all points
            in the pointcloud
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
       └──── radius_search(self, point, double radius, unsigned int max_nn=0)
    
            Search for all neighbors of query point that are within a given radius
    ├──── pcl.OctreePointCloudChangeDetector_PointXYZI
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── get_PointIndicesFromNewVoxels(self)
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
    ├──── pcl.KdTreeFLANN_PointXYZRGBA
       └──── nearest_k_search_for_point(self, PointCloud_PointXYZRGBA pc, int index, int k=1)
    
            Find the k nearest neighbours and squared distances for the point
            at pc[index]
       └──── nearest_k_search_for_cloud(self, PointCloud_PointXYZRGBA pc, int k=1)
    
            Find the k nearest neighbours and squared distances for all points
            in the pointcloud
    ├──── pcl.PointCloud_PointNormal
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 4-tuples
            
       └──── __reduce__(self)
       └──── to_list(self)
    
            Return this object as a list of 3-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (3-tuple) at the given row/column
            
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── resize(self, npy_intp x)
    ├──── pcl.StatisticalOutlierRemovalFilter_PointXYZRGBA
       └──── set_mean_k(self, int k)
    
            Set the number of points (k) to use for mean distance estimation
       └──── set_negative(self, bool negative)
    
            Set whether the indices should be returned, or all points except the indices
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud_PointXYZRGBA pc)
       └──── set_std_dev_mul_thresh(self, double std_mul)
    
            Set the standard deviation multiplier threshold
    ├──── pcl.ConditionAnd
       └──── add_Comparison2(self, field_name, CompareOp2 compOp, double thresh)
    ├──── pcl.ConcaveHull_PointXYZRGB
       └──── set_Alpha(self, double d)
       └──── reconstruct(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.GeneralizedIterativeClosestPoint
       └──── gicp(self, PointCloud source, PointCloud target, max_iter=None)
    
            Align source to target using generalized iterative closest point (GICP)
    ├──── pcl.MovingLeastSquares
       └──── set_polynomial_fit(self, bool fit)
    
            Sets whether the surface and normal are approximated using a polynomial,
            or only via tangent estimation
       └──── set_polynomial_order(self, bool order)
    
            Set the order of the polynomial to be fit
       └──── set_search_radius(self, double radius)
    
            Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting
       └──── set_Search_Method(self, KdTree kdtree)
       └──── set_Compute_Normals(self, bool flag)
       └──── process(self)
    
            Apply the smoothing according to the previously set values and return
            a new PointCloud
            
    ├──── pcl.KdTree
    ├──── pcl.VFHEstimation
       └──── set_SearchMethod(self, KdTree kdtree)
       └──── set_KSearch(self, int param)
    ├──── pcl.IterativeClosestPointNonLinear
       └──── icp_nl(self, PointCloud source, PointCloud target, max_iter=None)
    
            Align source to target using generalized non-linear ICP (ICP-NL)
    ├──── pcl.ProjectInliers
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── get_copy_all_data(self)
       └──── get_model_type(self)
       └──── set_model_type(self, SacModel m)
       └──── set_copy_all_data(self, bool m)
    ├──── pcl.ApproximateVoxelGrid_PointXYZRGBA
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud_PointXYZRGBA pc)
    ├──── pcl.ApproximateVoxelGrid_PointXYZRGB
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud_PointXYZRGB pc)
    ├──── pcl.OctreePointCloud2Buf_PointXYZI
       └──── set_input_cloud(self, PointCloud_PointXYZI pc)
    
            Provide a pointer to the input data set
       └──── delete_tree(self)
    
            Delete the octree structure and its leaf nodes
    ├──── pcl.ApproximateVoxelGrid_PointXYZI
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud_PointXYZI pc)
    ├──── pcl.OctreePointCloudChangeDetector_PointXYZRGB
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── get_PointIndicesFromNewVoxels(self)
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
    ├──── pcl.SampleConsensusModelPlane
    ├──── pcl.PointCloud_PointXYZRGBA
       └──── from_list(self, _list)
    
           Fill this pointcloud from a list of 4-tuples
           
       └──── __reduce__(self)
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── _to_ply_file(self, const char *f, bool binary=False)
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── extract(self, pyindices, bool negative=False)
    
            Given a list of indices of points in the pointcloud, return a 
            new pointcloud containing only those points
       └──── make_voxel_grid_filter(self)
    
            Return a pcl
       └──── make_segmenter(self)
    
            Return a pcl
       └──── _from_obj_file(self, const char *s)
       └──── to_file(self, const char *fname, bool ascii=True)
    Save pointcloud to a file in PCD format
       └──── make_passthrough_filter(self)
    
            Return a pcl
       └──── _from_ply_file(self, const char *s)
       └──── make_kdtree_flann(self)
    
            Return a pcl
       └──── _from_pcd_file(self, const char *s)
       └──── resize(self, npy_intp x)
       └──── make_statistical_outlier_filter(self)
    
             Return a pcl
       └──── from_file(self, char *f)
    
            Fill this pointcloud from a file (a local path)
       └──── _to_pcd_file(self, const char *f, bool binary=False)
       └──── to_list(self)
    
            Return this object as a list of 3-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (3-tuple) at the given row/column
            
       └──── make_moving_least_squares(self)
    
            Return a pcl
       └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
    ├──── pcl.SampleConsensusModelSphere
    ├──── pcl.KdTreeFLANN
       └──── radius_search_for_cloud(self, PointCloud pc, double radius, unsigned int max_nn=0)
    
            Find the radius and squared distances for all points
            in the pointcloud
       └──── nearest_k_search_for_point(self, PointCloud pc, int index, int k=1)
    
            Find the k nearest neighbours and squared distances for the point
            at pc[index]
       └──── nearest_k_search_for_cloud(self, PointCloud pc, int k=1)
    
            Find the k nearest neighbours and squared distances for all points
            in the pointcloud
    ├──── pcl.SampleConsensusModelCylinder
    ├──── pcl.MomentOfInertiaEstimation
       └──── get_AABB(self)
       └──── get_EigenVectors(self)
       └──── compute(self)
       └──── get_EigenValues(self)
       └──── get_Eccentricity(self)
       └──── get_OBB(self)
       └──── set_InputCloud(self, PointCloud pc)
       └──── get_MassCenter(self)
       └──── get_MomentOfInertia(self)
    ├──── pcl.NormalDistributionsTransform
       └──── set_OulierRatio(self, double outlier_ratio)
       └──── get_TransformationProbability(self)
       └──── set_StepSize(self, double step_size)
       └──── get_OulierRatio(self)
       └──── set_InputTarget(self)
       └──── set_Resolution(self, float resolution)
       └──── get_FinalNumIteration(self)
       └──── get_Resolution(self)
       └──── get_StepSize(self)
    ├──── pcl.SampleConsensusModel
    ├──── pcl.CropBox
       └──── set_Rotation(self, rx, ry, rz)
       └──── set_Min(self, minx, miny, minz, mins)
       └──── get_Negative(self)
       └──── set_MinMax(self, minx, miny, minz, mins, maxx, maxy, maxz, maxs)
       └──── set_Negative(self, bool flag)
       └──── set_Max(self, maxx, maxy, maxz, maxs)
       └──── get_RemovedIndices(self)
       └──── filter(self)
       └──── set_Translation(self, tx, ty, tz)
       └──── set_InputCloud(self, PointCloud pc)
    ├──── pcl.MovingLeastSquares_PointXYZRGBA
       └──── set_polynomial_fit(self, bool fit)
    
            Sets whether the surface and normal are approximated using a polynomial,
            or only via tangent estimation
       └──── set_polynomial_order(self, bool order)
    
            Set the order of the polynomial to be fit
       └──── set_search_radius(self, double radius)
    
            Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting
       └──── process(self)
    
            Apply the smoothing according to the previously set values and return
            a new pointcloud
            
    ├──── pcl.IntegralImageNormalEstimation
       └──── set_NormalEstimation_Method_SIMPLE_3D_GRADIENT(self)
       └──── set_NormalEstimation_Method_COVARIANCE_MATRIX(self)
       └──── set_NormalSmoothingSize(self, double param)
       └──── set_NormalEstimation_Method_AVERAGE_3D_GRADIENT(self)
       └──── set_MaxDepthChange_Factor(self, double param)
       └──── set_NormalEstimation_Method_AVERAGE_DEPTH_CHANGE(self)
       └──── compute(self)
    ├──── pcl.VoxelGridFilter_PointXYZRGBA
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.Segmentation_PointXYZRGBA
       └──── set_method_type(self, int m)
       └──── set_distance_threshold(self, float d)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.PassThroughFilter
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_filter_limits(self, float filter_min, float filter_max)
       └──── set_filter_field_name(self, field_name)
    ├──── pcl.OctreePointCloudChangeDetector
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── get_PointIndicesFromNewVoxels(self)
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
       └──── switchBuffers(self)
    ├──── pcl.HarrisKeypoint3D
       └──── compute(self)
       └──── set_NonMaxSupression(self, bool param)
       └──── set_RadiusSearch(self, double param)
       └──── set_Radius(self, float param)
    ├──── pcl.ConcaveHull_PointXYZI
       └──── set_Alpha(self, double d)
       └──── reconstruct(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
    ├──── pcl.CropHull
       └──── Filtering(self, PointCloud outputCloud)
       └──── filter(self)
       └──── set_InputCloud(self, PointCloud pc)
       └──── SetParameter(self, PointCloud points, Vertices vt)
    ├──── pcl.Segmentation_PointXYZRGB_Normal
       └──── set_method_type(self, int m)
       └──── get_eps_angle(self)
       └──── get_min_max_opening_angle(self)
       └──── set_distance_threshold(self, float d)
       └──── set_axis(self, double ax1, double ax2, double ax3)
       └──── set_radius_limits(self, float f1, float f2)
       └──── get_axis(self)
       └──── set_max_iterations(self, int i)
       └──── set_min_max_opening_angle(self, double min_angle, double max_angle)
    
            Set the minimum and maximum cone opening angles in radians for a cone model
       └──── set_eps_angle(self, double ea)
       └──── set_normal_distance_weight(self, float f)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.PassThroughFilter_PointXYZI
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new PointCloud_PointXYZI
            
       └──── set_filter_limits(self, float filter_min, float filter_max)
       └──── set_filter_field_name(self, field_name)
    ├──── pcl.ApproximateVoxelGrid
       └──── set_leaf_size(self, float x, float y, float z)
    
            Set the voxel grid leaf size
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new pointcloud
            
       └──── set_InputCloud(self, PointCloud pc)
    ├──── pcl.OctreePointCloudSearch_PointXYZRGB
       └──── define_bounding_box(self)
    
            Investigate dimensions of pointcloud data set and define corresponding bounding box for octree
       └──── add_points_from_input_cloud(self)
    
            Add points from input point cloud to octree
       └──── is_voxel_occupied_at_point(self, point)
    
            Check if voxel at given point coordinates exist
       └──── delete_voxel_at_point(self, point)
    
            Delete leaf node / voxel at given point
       └──── get_occupied_voxel_centers(self)
    
            Get list of centers of all occupied voxels
       └──── radius_search(self, point, double radius, unsigned int max_nn=0)
    
            Search for all neighbors of query point that are within a given radius
    ├──── pcl.PointCloud
       └──── make_octreeChangeDetector(self, double resolution)
    
            Return a pcl
       └──── from_list(self, _list)
    
            Fill this pointcloud from a list of 3-tuples
            
       └──── make_kdtree(self)
    
            Return a pcl
       └──── __reduce__(self)
       └──── make_ConcaveHull(self)
    
            Return a pcl
       └──── from_array(self, ndarray arr)
    
            Fill this object from a 2D numpy array (float32)
            
       └──── _to_ply_file(self, const char *f, bool binary=False)
       └──── make_RangeImage(self)
       └──── to_array(self)
    
            Return this object as a 2D numpy array (float32)
            
       └──── make_ConditionalRemoval(self, ConditionAnd range_conf)
    
            Return a pcl
       └──── extract(self, pyindices, bool negative=False)
    
            Given a list of indices of points in the pointcloud, return a 
            new pointcloud containing only those points
       └──── make_GeneralizedIterativeClosestPoint(self)
       └──── make_octreeSearch(self, double resolution)
    
            Return a pcl
       └──── make_octree(self, double resolution)
    
            Return a pcl
       └──── make_ProjectInliers(self)
    
            Return a pclfil
       └──── make_NormalEstimation(self)
       └──── make_RegionGrowing(self, int ksearch=-1, double searchRadius=-1
       └──── make_IterativeClosestPointNonLinear(self)
       └──── make_voxel_grid_filter(self)
    
            Return a pcl
       └──── make_segmenter(self)
    
            Return a pcl
       └──── _from_obj_file(self, const char *s)
       └──── to_file(self, const char *fname, bool ascii=True)
    Save pointcloud to a file in PCD format
       └──── make_ApproximateVoxelGrid(self)
    
            Return a pcl
       └──── make_VFHEstimation(self)
       └──── make_EuclideanClusterExtraction(self)
       └──── make_ConditionAnd(self)
    
            Return a pcl
       └──── make_passthrough_filter(self)
    
            Return a pcl
       └──── _from_ply_file(self, const char *s)
       └──── make_kdtree_flann(self)
    
            Return a pcl
       └──── _from_pcd_file(self, const char *s)
       └──── make_RadiusOutlierRemoval(self)
    
            Return a pclfil
       └──── resize(self, npy_intp x)
       └──── make_statistical_outlier_filter(self)
    
            Return a pcl
       └──── from_file(self, char *f)
    
            Fill this pointcloud from a file (a local path)
       └──── _to_pcd_file(self, const char *f, bool binary=False)
       └──── make_cropbox(self)
    
            Return a pcl
       └──── make_MomentOfInertiaEstimation(self)
       └──── make_IterativeClosestPoint(self)
       └──── to_list(self)
    
            Return this object as a list of 3-tuples
            
       └──── get_point(self, npy_intp row, npy_intp col)
    
            Return a point (3-tuple) at the given row/column
            
       └──── make_HarrisKeypoint3D(self)
    
            Return a pcl
       └──── make_moving_least_squares(self)
    
            Return a pcl
       └──── make_IntegralImageNormalEstimation(self)
    
            Return a pcl
       └──── make_segmenter_normals(self, int ksearch=-1, double searchRadius=-1
       └──── make_crophull(self)
    
            Return a pcl
    ├──── pcl.RangeImages
       └──── CreateFromPointCloud(self, PointCloud cloud, float angular_resolution, float max_angle_width, float max_angle_height, CoordinateFrame2 coordinate_frame, float noise_level, float min_range, int border_size)
       └──── SetUnseenToMaxRange(self)
       └──── SetAngularResolution(self, float angular_resolution_x, float angular_resolution_y)
       └──── IntegrateFarRanges(self, PointCloud_PointWithViewpoint viewpoint)
    ├──── pcl.IterativeClosestPoint
       └──── icp(self, PointCloud source, PointCloud target, max_iter=None)
    
            Align source to target using iterative closest point (ICP)
       └──── set_InputTarget(self, PointCloud cloud)
    ├──── pcl.Segmentation_PointXYZI_Normal
       └──── set_method_type(self, int m)
       └──── get_eps_angle(self)
       └──── get_min_max_opening_angle(self)
       └──── set_distance_threshold(self, float d)
       └──── set_axis(self, double ax1, double ax2, double ax3)
       └──── set_radius_limits(self, float f1, float f2)
       └──── get_axis(self)
       └──── set_max_iterations(self, int i)
       └──── set_min_max_opening_angle(self, double min_angle, double max_angle)
    
            Set the minimum and maximum cone opening angles in radians for a cone model
       └──── set_eps_angle(self, double ea)
       └──── set_normal_distance_weight(self, float f)
       └──── set_model_type(self, SacModel m)
       └──── segment(self)
       └──── set_optimize_coefficients(self, bool b)
    ├──── pcl.PassThroughFilter_PointXYZRGB
       └──── filter(self)
    
            Apply the filter according to the previously set parameters and return
            a new PointCloud_PointXYZRGB
            
       └──── set_filter_limits(self, float filter_min, float filter_max)
       └──── set_filter_field_name(self, field_name)

    visualization模块

    这里visual 为pcl.pcl_visualization
    ├──── visual.PointCloudColorHandleringRandom
    ├──── visual.PointCloudColorHandleringGenericField
    ├──── visual.PointCloudGeometryHandlerCustom
    ├──── visual.CloudViewing
       └──── ShowColorACloud(self, PointCloud_PointXYZRGBA pc, cloudname=b'cloud')
       └──── ShowMonochromeCloud(self, PointCloud pc, cloudname=b'cloud')
       └──── WasStopped(self, int millis_to_wait=1)
       └──── ShowColorCloud(self, PointCloud_PointXYZRGB pc, cloudname=b'cloud')
       └──── ShowGrayCloud(self, PointCloud_PointXYZI pc, cloudname=b'cloud')
    ├──── visual.PointCloudGeometryHandleringCustom
    ├──── visual.PointCloudColorHandleringCustom
    ├──── visual.PointCloudColorHandleringHSVField
    ├──── visual.PCLHistogramViewing
       └──── SpinOnce(self, int time=1, bool force_redraw=False)
       └──── Spin(self)
       └──── AddFeatureHistogram(self, PointCloud cloud, int hsize, cloudname, int win_width=640, int win_height=200)
    ├──── visual.PointCloudGeometryHandleringXYZ
    ├──── visual.PCLVisualizering
       └──── AddPlane(self)
       └──── ResetStoppedFlag(self)
       └──── AddCube(self, double min_x, double max_x, double min_y, double max_y, double min_z, double max_z, double r, double g, double b, name)
       └──── SetFullScreen(self, bool mode)
       └──── RemoveAllShapes(self, int viewport)
       └──── AddPointCloud_ColorHandler(self, PointCloud cloud, PointCloudColorHandleringCustom color_handler, id=b'cloud', viewport=0)
       └──── SetPointCloudRenderingProperties(self, int propType, int propValue, propName=b'cloud')
       └──── AddLine(self)
       └──── RemoveAllPointClouds(self, int viewport)
       └──── SetBackgroundColor(self, int r, int g, int b)
       └──── AddSphere(self)
       └──── AddCylinder(self)
       └──── RemoveShape(self, string id, int viewport)
       └──── SpinOnce(self, int millis_to_wait=1, bool force_redraw=False)
       └──── Spin(self)
       └──── AddCircle(self)
       └──── InitCameraParameters(self)
       └──── AddCoordinateSystem(self, double scale=1
       └──── WasStopped(self)
       └──── RemovePointCloud(self, string id, int viewport)
       └──── AddCone(self)
       └──── UpdateText(self, string text, int xpos, int ypos, id)
       └──── SetWindowBorders(self, bool mode)
       └──── AddText(self, string text, int xpos, int ypos, id, int viewport)
       └──── RemovePolygonMesh(self, string id, int viewport)
       └──── removeCoordinateSystem(self, int viewport)
       └──── AddPointCloudNormals(self, PointCloud cloud, PointCloud_Normal normal, int level=100, double scale=0
       └──── Close(self)
       └──── RemoveText3D(self, string id, int viewport)
       └──── AddPointCloud(self, PointCloud cloud, id=b'cloud', int viewport=0)
    ├──── visual.PointCloudColorHandleringRGBField
    ├──── visual.PointCloudGeometryHandleringSurfaceNormal

    一些常量

    ('SACMODEL_LINE', 1)
    ('SACMODEL_PARALLEL_PLANE', 15)
    ('SACMODEL_CYLINDER', 5)
    ('SAC_PROSAC', 6)
    ('SAC_LMEDS', 1)
    ('SACMODEL_PARALLEL_LINES', 10)
    ('SAC_MSAC', 2)
    ('SACMODEL_REGISTRATION', 13)
    ('SAC_RRANSAC', 3)
    ('SACMODEL_NORMAL_PARALLEL_PLANE', 16)
    ('SACMODEL_NORMAL_SPHERE', 12)
    ('SACMODEL_CIRCLE2D', 2)
    ('SACMODEL_TORUS', 7)
    ('SACMODEL_STICK', 17)
    ('SACMODEL_CIRCLE3D', 3)
    ('SAC_RMSAC', 4)
    ('SACMODEL_NORMAL_PLANE', 11)
    ('SACMODEL_PERPENDICULAR_PLANE', 9)
    ('SAC_RANSAC', 0)
    ('SACMODEL_CONE', 6)
    ('SAC_MLESAC', 5)
    ('SACMODEL_SPHERE', 4)
    ('SACMODEL_PARALLEL_LINE', 8)
    ('SACMODEL_PLANE', 0)
    
    ('PCLVISUALIZER_OPACITY', 1)
    ('PCLVISUALIZER_REPRESENTATION', 5)
    ('PCLVISUALIZER_FONT_SIZE', 3)
    ('PCLVISUALIZER_POINT_SIZE', 0)
    ('PCLVISUALIZER_REPRESENTATION_WIREFRAME', 1)
    ('PCLVISUALIZER_IMMEDIATE_RENDERING', 6)
    ('PCLVISUALIZER_REPRESENTATION_POINTS', 0)
    ('PCLVISUALIZER_REPRESENTATION_SURFACE', 2)
    ('PCLVISUALIZER_LINE_WIDTH', 2)
    ('PCLVISUALIZER_COLOR', 4)
  • 相关阅读:
    python读写hdf5及cdf格式文件
    常用python shell
    opencv的使用——经典大坑
    opencv python实用操作
    opencv python基本操作
    opencv c++实用操作
    opencv c++基本操作
    opencv安装
    [HNOI2005]星际贸易
    [2017SEERC]Divide and Conquer
  • 原文地址:https://www.cnblogs.com/Glucklichste/p/11186969.html
Copyright © 2020-2023  润新知