• TZOJ 2519 Regetni(N个点求三角形面积为整数总数)


    描述

    Background
    Hello Earthling. We're from the planet Regetni and need your help to make lots of money. Maybe we'll even give you some of it.
    You see, the problem is that in our world, everything is about integers. It's even enforced by law. No other numbers are allowed for anything. That said, it shouldn't surprise you that we use integer coordinate systems to plan our cities. So far only axis-aligned rectangular plots of land have been sold, but our professor Elgnairt recently had the revolutionary idea to sell triangular plots, too. We believe that the high society will love this concept and it'll make us rich.
    Unfortunately the professor patented his idea and thus we can't just do it. We need his permission and since he's a true scientist, he won't give it to us before we solve some damn riddle. Here's where you come in,because we heard that you're a genius.

    Problem
    The professor's riddle goes like this: Given some possible corners for the triangles, determine how many triangles with integral size can be built with them. Degenerated triangles with empty area (i.e. lines) have to be counted, too, since 0 is an integer. To be more precise, count the number of triangles which have as corners three different points from the input set of points. All points in a scenario will be distinct, i.e. there won't be duplicates. Here are some examples:


    Example a) shows a triangle with integral area (namely 3), b) shows one with non-integral size, c) shows a degenerated triangle with empty area (i.e. zero, so count it!), d) shows four points of which you can choose any three to build an integral area triangle and e) shows four points where you can't build any integral area triangles at all.
    Hint: The area A of a triangle with corners (x1, y1), (x2, y2) and (x3, y3) can be computed like this:
    A=|x1y2 - y1x2 + x2y3 - y2x3 + x3y1 - y3x1|/2
    Try to make clever use of this formula.

    输入

    The first line contains the number of scenarios. For each scenario, there is one line containing first the number N of distinct points in that scenario (0 <= N <= 10000) and after that N pairs of integers, each pair describing one point (xi, yi) with -100000 <= xi, yi <= 100000. All these numbers are separated by single blanks.

    输出

    Start the output for every scenario with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the number of triangles with integral area whose three distinct corners are among the points given. Terminate the output for each scenario with a blank line.

    样例输入

    6
    3 0 0 2 0 1 -3
    3 0 0 2 1 1 -3
    3 0 0 2 2 3 3
    4 0 0 2 0 0 2 2 2
    4 0 0 1 0 0 1 1 1
    9 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

    样例输出

    Scenario #1:
    1

    Scenario #2:
    0

    Scenario #3:
    1

    Scenario #4:
    4

    Scenario #5:
    0

    Scenario #6:
    48
    题意

    给你N个点,求三角形面积为整数的总数

    题解

    A=|x1y2 - y1x2 + x2y3 - y2x3 + x3y1 - y3x1|/2

    要使公式为整数,|x1y2 - y1x2 + x2y3 - y2x3 + x3y1 - y3x1|为偶

    三个点P(x1,y1),Q(x2,y2),C(x3,y3)

    可以发现上面的公式和PQC三点的x和y的奇偶性有关

    令0=x偶y偶,1=x偶y奇,2=x奇y偶,3=x奇y奇。

    打表完后利用组合数求个和。

    代码

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 
     4 struct point
     5 {
     6     int p,q,c;
     7     bool operator<(const point &d)const{
     8         if(p<d.p)return true;
     9         else if(p==d.p)
    10         {
    11             if(q<d.q)return true;
    12             else if(q==d.q)
    13             {
    14                 if(c<d.c)return true;
    15             }
    16         }
    17         return false;
    18     }
    19 };
    20 set<point>v;
    21 void cs()
    22 {
    23     pair<int,int>po[4];
    24     po[0]={2,2};
    25     po[1]={2,1};
    26     po[2]={1,2};
    27     po[3]={1,1};
    28     for(int p=0;p<4;p++)
    29         for(int q=0;q<4;q++)
    30             for(int c=0;c<4;c++)
    31             {
    32                 int x1,x2,x3,y1,y2,y3;
    33                 x1=po[p].first;y1=po[p].second;
    34                 x2=po[q].first;y2=po[q].second;
    35                 x3=po[c].first;y3=po[c].second;
    36                 if((x1*y2-y1*x2+x2*y3-y2*x3+x3*y1-y3*x1)%2==0)
    37                 {
    38                     int d[4];
    39                     d[0]=p;
    40                     d[1]=q;
    41                     d[2]=c;
    42                     sort(d,d+3);
    43                     v.insert({d[0],d[1],d[2]});
    44                 }
    45             }
    46 }
    47 long long C(int n,int m)
    48 {
    49     if(m>n)return 0;
    50     long long sum=1;
    51     for(int i=1;i<=m;i++)
    52         sum=sum*(n-i+1)/i;
    53     return sum;
    54 }
    55 int main()
    56 {
    57     cs();
    58     int t,n,ca=1;
    59     scanf("%d",&t);
    60     while(t--)
    61     {
    62         int d[4]={0};
    63         scanf("%d",&n);
    64         for(int i=0;i<n;i++)
    65         {
    66             int x,y;
    67             scanf("%d%d",&x,&y);
    68             if(x%2==0&&y%2==0)d[0]++;
    69             if(x%2==0&&y%2!=0)d[1]++;
    70             if(x%2!=0&&y%2==0)d[2]++;
    71             if(x%2!=0&&y%2!=0)d[3]++;
    72         }
    73         long long sum=0;
    74         for(auto x:v)
    75         {
    76             int p=x.p;
    77             int q=x.q;
    78             int c=x.c;
    79             printf("%d %d %d
    ",p,q,c);
    80             int f[4]={0};
    81             f[p]++;f[q]++;f[c]++;
    82             sum+=C(d[0],f[0])*C(d[1],f[1])*C(d[2],f[2])*C(d[3],f[3]);
    83         }
    84         printf("Scenario #%d:
    %lld
    
    ",ca++,sum);
    85     }
    86     return 0;
    87 }
  • 相关阅读:
    Navicat Premium 12.1.12.0破解版激活
    vConsole调试器
    使用DbFunctions来解决asp.net mvc ef按照日期分组数据
    谷歌浏览器如何安装CRX插件?crx离线插件安装方法
    ASP.NET MVC——CodeFirst开发模式
    Sql server 事务的两种用法
    SQL Server 存储过程
    JqueryMobile新手问题大全
    .net core 轻量级容器 ServiceProvider 源码分析
    Centos7 使用Docker 部署mssql 2017
  • 原文地址:https://www.cnblogs.com/taozi1115402474/p/10293567.html
Copyright © 2020-2023  润新知