• hdu 6444 Neko's loop 单调队列优化DP


    Neko's loop

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 356    Accepted Submission(s): 56


    Problem Description
    Neko has a loop of size n.
    The loop has a happy value ai on the ith(0in1) grid. 
    Neko likes to jump on the loop.She can start at anywhere. If she stands at ith grid, she will get ai happy value, and she can spend one unit energy to go to ((i+k)modn)th grid. If she has already visited this grid, she can get happy value again. Neko can choose jump to next grid if she has energy or end at anywhere. 
    Neko has m unit energies and she wants to achieve at least s happy value.
    How much happy value does she need at least before she jumps so that she can get at least s happy value? Please note that the happy value which neko has is a non-negative number initially, but it can become negative number when jumping.
     
    Input
    The first line contains only one integer T(T50), which indicates the number of test cases. 
    For each test case, the first line contains four integers n,s,m,k(1n104,1s1018,1m109,1kn).
    The next line contains n integers, the ith integer is ai1(109ai1109)
     
    Output
    For each test case, output one line "Case #x: y", where x is the case number (starting from 1) and y is the answer.
     
    Sample Input
    2 3 10 5 2 3 2 1 5 20 6 3 2 3 2 1 5
     
    Sample Output
    Case #1: 0 Case #2: 2
     
    Source
     
    Recommend
    chendu

    刚开始看 觉得是n^2的暴力 ,然后被蒋大佬说 必须O(n)过,最后在WA了四发以后,比赛最后半个小时A了这道题

    n个数,最多跳m步,每次跳到(i+k)%n,然后求距 s 的最小差,大于s 计为0

    很朴素的想法 枚举每个i从0到n-1 然后暴力跑循环节

    假设循环节大小为len,最后 res = max(0, getRes(len)) *m/len + max(0, getRes(m%len)); getRes(x) 就是求一个循环节上 长度最大为x的最长子段和(注意是子段 不是子序列)

    可以预处理O(n)求出每个循环节, 然后对每个循环节 求上面的结果 

    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    
    typedef long long ll;
    using namespace std;
    
    const int N = 1e4+10;
    
    int n,m,k,cnt ;
    ll s, MAX, v[N];
    bool vis[N]; vector<ll> g[N];
    ll que[N<<1],mx[N<<1],sta[N<<1];
    
    
    ll solve(const vector<ll>&vv, int count) {
        int sz= vv.size();
        for(int i=0;i<sz;i++)
            que[i] = que[i+sz] = vv[i];
        sz = sz<<1;
        int st=0,ed=0; 
        ll res=0;
        for(int i=0;i<sz;i++) {
            if(i==0) 
                mx[i] = que[i];
            else 
                mx[i] = mx[i-1]+que[i];
    
            if(i < count) 
                res = max(res, mx[i]);
            
            while (st < ed && sta[st]+count < i) 
                st++;
            if(st < ed) 
                res = max(res, mx[i] - mx[sta[st]]);
            while (st < ed && mx[i] <= mx[sta[ed-1]])
                ed--;
            sta[ed++]=i;
        }
        return res;
    }
    
    ll getRes(const vector<ll>& vv,int step,ll top) {
        ll mod = step % vv.size(); ll kk = step/ vv.size();
        ll sum = 0;
        for(int i=0; i<vv.size();i++) 
            sum += vv[i];
        ll mx1 = solve(vv, mod);
        ll mx2 = solve(vv, vv.size());
        mx1 += max(0LL, sum)*kk;
        mx2 += max(0LL, sum)*((kk>2)?kk-1:0);
        return max(mx1,mx2);
    }
    
    int main ()
    {
        //freopen("in.txt","r",stdin);
        int T; scanf("%d",&T);
        for(int cas=1; cas<=T; cas++) {
            memset(vis,0,sizeof(vis));
            scanf("%d %lld %d %d", &n, &s, &m, &k);
            for(int i=0;i<n;i++) 
                scanf("%lld", &v[i]);
            cnt=0; MAX=0;
            for(int i=0; i<n; i++) {
                g[cnt].clear();
                if(!vis[i]) {
                    vis[i]=1;
                    g[cnt].push_back(v[i]);
                    for(int j=(i+k)%n; j!=i && !vis[j]; j=(j+k)%n) {
                        g[cnt].push_back(v[j]);
                        vis[j]=1;
                    }
                    //for(int j=0;j<g[cnt].size();j++) 
                        //cout << g[cnt][j]<<" ";
                    //cout <<endl;
                    MAX = max(MAX, getRes(g[cnt], m, s));    
                    cnt++;    
                }
            }
            if(MAX >= s) MAX=0;
            else MAX = s-MAX;
            printf("Case #%d: %lld
    ", cas, MAX);
        }
        return 0;
    }
  • 相关阅读:
    DevOps
    DevOps
    Jenkins
    43、android:screenOrientation
    42、使用存放在存assets文件夹下的SQLite数据库
    41、Android中当数据库需要更新时我们该怎么办?
    40、DrawerLayout使用详情
    用Java来写常见的排序算法
    Android高手速成
    16进制 ,Color,Colour转换
  • 原文地址:https://www.cnblogs.com/Draymonder/p/9536967.html
Copyright © 2020-2023  润新知