• 卷积神经网络(2)


    卷积层:

     神经网络通过参数共享、稀疏连接减少参数。

    一、过滤器:卷积【参数共享加稀疏连接,故参数较少,而全连接参数较大】

    卷积:过滤器、边缘检测器:常用奇数维

    举例说明:

    左边矩阵中间有一个垂直线,10和0之间。

    通过卷积过滤器,也可叫垂直检测器,得到右边矩阵,右边矩阵30可看做检测出来的边缘。

    可以观察到明亮边缘变化:正数与负数

    水平检测器:

     卷积神经网络:

    参数共享和稀疏连接

    绿色0和红色30,仅仅与左边矩阵绿色和红色矩阵相关,对其他值没有影响,这个是稀疏连接。

    二、Padding:边缘补0

    valid填充:表示不填充

    same填充:表示输出大小和输入大小是一样的。

    比如:6 * 6的图像大小,经过 3 * 3的过滤器,采用valid填充【即不填充】,得到 4 * 4的图像。

    采用same填充,得到的还是 6 * 6 的图像。

    三、stride:卷积步长

     卷积层的是向下取整,池化层是向上取整。

     四、立体卷积神经网络

    多一个通道,三个通道加和得到输出结果,

    输入:6 * 6 * 3【三通道】

    过滤器:3 * 3 * 3【三通道,必须和输入的3相等】

    输出:4 * 4 * 1

    多个过滤器,比如:垂直、水平、45度等等。拼接起来即可。

     然后将输出 4 * 4 * 2展开成一个向量,进行logic、softmax等激活函数得到结果Y。

    池化层:最大、平均

    最大的比平均的用的多。

    池化层没有参数可学习,一般设置padding = 0

    其对每个深度都进行计算。

     卷积层、池化层、全连接层的例子

    总结:

  • 相关阅读:
    快学scala习题解答--第五章 类
    从头认识java-18.2 主要的线程机制(2)-Executors的使用
    关于Bootstrap的理解
    Raw-OS源代码分析之idle任务
    Scilab 的画图函数(3)
    HDU2586.How far away ?——近期公共祖先(离线Tarjan)
    Codeforces Round #311 (Div. 2) A,B,C,D,E
    presto访问 Azure blob storage
    Presto集群安装配置
    Presto架构及原理
  • 原文地址:https://www.cnblogs.com/Lee-yl/p/10013237.html
Copyright © 2020-2023  润新知