• poj2112


                                                                                                                Optimal Milking
    Time Limit: 2000MS   Memory Limit: 30000K
    Total Submissions: 10100   Accepted: 3672
    Case Time Limit: 1000MS

    Description

    FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C. 

    Each milking point can "process" at most M (1 <= M <= 15) cows each day. 

    Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine. 

    Input

    * Line 1: A single line with three space-separated integers: K, C, and M. 

    * Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line. 

    Output

    A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

    Sample Input

    2 3 2
    0 3 2 1 1
    3 0 3 2 0
    2 3 0 1 0
    1 2 1 0 2
    1 0 0 2 0
    

    Sample Output

    2



    #include <cstdio>
    #include <cstring>
    #define MAX 300
    #define INF 10000000
    
    int dis[MAX][MAX];        //任意连点间的最短路径
    int map[MAX][MAX];        //容量网络
    bool sign[MAX][MAX];    //层次网络
    bool used[MAX];            //标志数组
    int K, C, n, M;
    
    int min( int a,  int b )
    {
        return a < b ? a : b;
    }
    
    void Bulid_Graph( int min_max )    //构建容量网络
    {
        int i, j;
        memset( map, 0, sizeof( map ) );    //初始化
        for( i = K+1; i <= n; i++ )  map[0][i] = 1;
        for( i = 1; i <= K; i++ )  map[i][n+1] = M;
        for( i = K+1; i <= n; i++ )
        {
            for( j = 1; j <= K; j++ )
            {
                if( dis[i][j] <= min_max )  map[i][j] = 1;
            }
        }
    }
    
    bool BFS( )  //BFS构建层次网络
    {
        //初始化
        memset( used, 0, sizeof( used ) );  memset( sign, 0, sizeof( sign ) );
        int queue[100*MAX] = {0};
        queue[0] = 0;  used[0] = 1;
        int t = 1, f = 0;
    
        while( f < t )
        {
            for( int i = 0; i <= n+1; i++ )
            {
                if( !used[i]&&map[queue[f]][i] )
                {
                    queue[t++] = i;  used[i] = 1;
                    sign[queue[f]][i] = 1;
                }
            }
            f++;
        } 
        if( used[n+1] )  return true;    //汇点在层次网络中
        else  return false;                //汇点不在层次网络中
    }
    
    int DFS( int v, int sum )  //DFS增广
    {
        int i, s, t;
    
        if( v == n+1 )  return sum;
        s = sum;
        for( i = 0; i <= n+1; i++ )
        {
            if( sign[v][i] )
            {
                t = DFS( i, min( map[v][i], sum ) );    //递归调用
                map[v][i] -= t;  map[i][v] += t;
                sum -= t;
            }
        }
        return s-sum;
    }
    
    int main( )
    {
        int i, j, k, L, R, mid, ans;
    
        scanf( "%d%d%d", &K, &C, &M );
        n = K + C;
    
        //Floyd算法,求任意两点间的最短距离
        for( i = 1; i <= n; i++ )
        {
            for( j = 1; j <= n; j++ )
            {
                scanf( "%d", &dis[i][j] );
                if( dis[i][j] == 0 )  dis[i][j] = INF;
            }
        }
        for( k = 1; k <= n; k++ )
        {
            for( i = 1; i <= n; i++ )
            {
                if( dis[i][k] != INF )
                {
                    for( j = 1; j <= n; j++ )
                        dis[i][j] = min( dis[i][k]+dis[k][j], dis[i][j] );
                }
            }
        }
    
        L = 0, R = 10000;
        while( L < R )    //二分法搜索
        { 
            mid = ( L+R )/2;  ans = 0;
            //Dinic算法求最大流
            Bulid_Graph( mid );    //构建容量网络(残余网络)
            while( BFS() ) ans += DFS( 0, INF );    //构建层次网络,并进行DFS增广
            if( ans >= C )  R = mid;
            else  L = mid+1;
        }
        printf( "%d
    ", R );
        return 0;
    }
  • 相关阅读:
    Luogu P1090 合并果子(优先队列 || priority_queue)
    Luogu P1012 拼数
    hibernate5.2的基本配置
    [bzoj1210][HNOI2004]邮递员【插头dp】
    [bzoj3470]Freda’s Walk【概率与期望dp】
    [bzoj4851][Jsoi2016]位运算【矩阵乘法】【状压dp】
    [bzoj4852][Jsoi2016]炸弹攻击【随机化】
    [bzoj4853][Jsoi2016]飞机调度【最短路】【网络流】
    [bzoj4850][Jsoi2016]灯塔【暴力】
    [bzoj4919][Lydsy1706月赛]大根堆【dp】【启发式合并】【stl】
  • 原文地址:https://www.cnblogs.com/Deng1185246160/p/3270218.html
Copyright © 2020-2023  润新知