• kernel task_struct


    
    struct task_struct {
    
    	struct thread_info		thread_info;
    	
    	volatile long			state; 					/* -1 unrunnable, 0 runnable, >0 stopped: */
    
    
    	
    	void				*stack;						/* 堆指针 */
    	atomic_t			usage;						/* 	进程描述符使用计数,被置为2时,表示进
    														程描述符正在被使用而且
    														其相应的进程处于活动状态 */
    	
    	unsigned int			flags; 					/* Per task flags (PF_*), defined further below: */
    	unsigned int			ptrace;				   	/* ptrace系统调用,成员ptrace被设置为0时表示不需要被跟踪 */
    
    	/* SMP CPU: */
    	struct llist_node		wake_entry;
    	int				on_cpu; 						/* 在SMP上帮助实现无加锁的进程切换 */
    	unsigned int			cpu;
    	/* end: */
    	
    	unsigned int			wakee_flips;
    	unsigned long			wakee_flip_decay_ts;
    	struct task_struct		*last_wakee;
    
    	/*
    	 * recent_used_cpu is initially set as the last CPU used by a task
    	 * that wakes affine another task. Waker/wakee relationships can
    	 * push tasks around a CPU where each wakeup moves to the next one.
    	 * Tracking a recently used CPU allows a quick search for a recently
    	 * used CPU that may be idle.
    	 */
    	int				recent_used_cpu;
    	int				wake_cpu;
    #endif
    	int				on_rq;
    
    	int				prio, static_prio, normal_prio;  /* prio: 调度器考虑的优先级保存在prio*/
    													 /* static_prio: 用于保存进程的"静态优先级*/
    													 /* normal_prio: 表示基于进程的"静态优先级"和"调度策略"计算出的优先级*/
    	unsigned int			rt_priority;			 /* rt_priority:表示实时进程的优先级,需要明白的是,
    														"实时进程优先级"和"普通进程优先级"有两个独立的范畴,
    														实时进程即使是最低优先级也高于普通进程,最低的实时优先级为0,
    														最高的优先级为99,值越大,表明优先级越高*/
    														
    
    	const struct sched_class	*sched_class;		 /* sched_class: 该进程所属的调度类*/
    	
    	struct sched_entity		se;
    	struct sched_rt_entity		rt;					 /* rt: 用于实时进程的调用实体 */
    
    	struct task_group		*sched_task_group;		 /* 组调度*/	
    
    	struct sched_dl_entity		dl;
    
    
    	/* List of struct preempt_notifier: */
    	struct hlist_head		preempt_notifiers;
    
    
    
    	unsigned int			btrace_seq;
    
    
    	unsigned int			policy;   				/* policy表示进程的调度策略 */
    	int				nr_cpus_allowed;
    	cpumask_t			cpus_allowed;
    
    							#ifdef CONFIG_PREEMPT_RCU   /* RCU同步原语 */
    								int				rcu_read_lock_nesting;
    								union rcu_special		rcu_read_unlock_special;
    								struct list_head		rcu_node_entry;
    								struct rcu_node			*rcu_blocked_node;
    							#endif /* #ifdef CONFIG_PREEMPT_RCU */
    
    							#ifdef CONFIG_TASKS_RCU
    								unsigned long			rcu_tasks_nvcsw;
    								u8				rcu_tasks_holdout;
    								u8				rcu_tasks_idx;
    								int				rcu_tasks_idle_cpu;
    								struct list_head		rcu_tasks_holdout_list;
    							#endif /* #ifdef CONFIG_TASKS_RCU */
    
    	struct sched_info		sched_info;			/* sched_info:用于调度器统计进程的运行信息*/
    
    	struct list_head		tasks;				/* 通过list_head将当前进程的task_struct串联进内核的进程列表中,
    												   构建;linux进程链表*/
    	struct plist_node		pushable_tasks; 	/ *    limit pushing to one attempt */
    	struct rb_node			pushable_dl_tasks;
    
    	struct mm_struct		*mm;				/* mm: 指向进程所拥有的内存描述符*/
    	struct mm_struct		*active_mm;			/* active_mm: active_mm指向进程运行时所使用的内存描述符*/
    
    	/* Per-thread vma caching: */
    	struct vmacache			vmacache;
    
    								#ifdef SPLIT_RSS_COUNTING
    									struct task_rss_stat		rss_stat;
    								#endif
    	int				exit_state;					/* 进程退出状态码*/
    	int				exit_code;					/* exit_code :用于设置进程的终止代号,
    												   这个值要么是_exit()或exit_group()
    												   系统调用参数(正常终止),
    												   要么是由内核提供的一个错误代号(异常终止)*/
    	int				exit_signal;				/* exit_signal被置为-1时表示是某个线程组中的一员。
    												   只有当线程组的最后一个成员终止时,
    												   才会产生一个信号,以通知线程组的领头进程的父进程*/
    	
    	int				pdeath_signal;				/* pdeath_signal用于判断父进程终止时发送信号 */
    	
    	/* JOBCTL_*, siglock protected: */
    	unsigned long			jobctl;
    
    	
    	unsigned int			personality;		/* Used for emulating ABI behavior 
    												   of previous Linux versions: */
    	                                            /* personality用于处理不同的ABI */
    
    	/* Scheduler bits, serialized by scheduler locks: */
    	unsigned			sched_reset_on_fork:1;
    	unsigned			sched_contributes_to_load:1;
    	unsigned			sched_migrated:1;
    	unsigned			sched_remote_wakeup:1;
    										#ifdef CONFIG_PSI
    											unsigned			sched_psi_wake_requeue:1;
    										#endif
    
    	/* Force alignment to the next boundary: */
    	unsigned			:0;
    
    	/* Unserialized, strictly 'current' */
    
    	/* in_execve用于通知LSM是否被do_execve()函数所调用 */
    	unsigned			in_execve:1;	
    	unsigned			in_iowait:1;			/* in_iowait用于判断是否进行iowait计数 */
    										#ifndef TIF_RESTORE_SIGMASK
    											unsigned			restore_sigmask:1;
    										#endif
    
    											unsigned			in_user_fault:1;
    
    										#ifdef CONFIG_COMPAT_BRK
    											unsigned			brk_randomized:1;
    										#endif
    										#ifdef CONFIG_CGROUPS
    											/* disallow userland-initiated cgroup migration */
    											unsigned			no_cgroup_migration:1;
    										#endif
    										#ifdef CONFIG_BLK_CGROUP
    											/* to be used once the psi infrastructure lands upstream. */
    											unsigned			use_memdelay:1;
    										#endif
    
    	unsigned long			atomic_flags; /* Flags requiring atomic access. */
    
    	struct restart_block		restart_block;
    
    	pid_t				pid;			
    	pid_t				tgid;
    							进程标识符(PID)
    							在CONFIG_BASE_SMALL配置为0的情况下,PID的取值范围是0到32767,即系统中的进程数最大为32768个
    							#define PID_MAX_DEFAULT (CONFIG_BASE_SMALL ? 0x1000 : 0x8000)  
    							在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程
    							(该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。
    							只有线程组的领头线程的pid成员才会被设置为与tgid相同的值。
    							注意,getpid()系统调用返回的是当前进程的tgid值而不是pid值
    
    
    	/* 防止内核堆栈溢出,在GCC编译内核时,需要加上-fstack-protector选项 */
    	unsigned long			stack_canary;
    
    	/*
    	 * Pointers to the (original) parent process, youngest child, younger sibling,
    	 * older sibling, respectively.  (p->father can be replaced with
    	 * p->real_parent->pid)
    	 */
    	
    	/* 表示进程亲属关系的成员*/
    	struct task_struct __rcu	*real_parent;			/* 指向其父进程,如果创建它的父进程不再存在,则指向PID为1的init进程 */
    
    	/* Recipient of SIGCHLD, wait4() reports: */
    	struct task_struct __rcu	*parent;				/* parent: 指向其父进程,当它终止时,必须向它的父进程发送信号。
    														   它的值通常与real_parent相同*/
    
    	/*
    	 * Children/sibling form the list of natural children:
    	 */
    	struct list_head		children;					/* children: 表示链表的头部,链表中的所有元素都是它的子进程(子进程链表)*/
    	struct list_head		sibling;					/* sibling: 用于把当前进程插入到兄弟链表中(连接到父进程的子进程链表(兄弟链表)*/
    	struct task_struct		*group_leader;				/* group_leader: 指向其所在进程组的领头进程*/
    
    	/*
    	 * 'ptraced' is the list of tasks this task is using ptrace() on.
    	 *
    	 * This includes both natural children and PTRACE_ATTACH targets.
    	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
    	 */
    	struct list_head		ptraced;
    	struct list_head		ptrace_entry;
    
    	/* PID/PID hash table linkage. */
    	struct pid			*thread_pid;
    	struct hlist_node		pid_links[PIDTYPE_MAX];			/* PID散列表和链表*/
    	struct list_head		thread_group;					/* 线程组中所有进程的链表*/
    	struct list_head		thread_node;
    
    	/* do_fork函数*/
    	struct completion		*vfork_done;					/* 在执行do_fork()时,如果给定特别标志,则vfork_done会指向一个特殊地址*/
    
    	/* CLONE_CHILD_SETTID: */
    	int __user			*set_child_tid;
    
    	/* CLONE_CHILD_CLEARTID: */
    	int __user			*clear_child_tid;
    	/* 如果copy_process函数的clone_flags参数的值被置为CLONE_CHILD_SETTID或CLONE_CHILD_CLEARTID,
    	则会把child_tidptr参数的值分别复制到set_child_tid和clear_child_tid成员。
    	这些标志说明必须改变子进程用户态地址空间的child_tidptr所指向的变量的值*/
    
    	u64				utime;
    	u64				stime;
    	u64				utimescaled;
    	u64				stimescaled;
    		/* 	1) utime
    			用于记录进程在"用户态"下所经过的节拍数(定时器)
    			2) stime
    			用于记录进程在"内核态"下所经过的节拍数(定时器)
    			3) utimescaled
    			用于记录进程在"用户态"的运行时间,但它们以处理器的频率为刻度
    			4) stimescaled
    			用于记录进程在"内核态"的运行时间,但它们以处理器的频率为刻度*/
    	u64				gtime;		/* 以节拍计数的虚拟机运行时间(guest time)*/
    	struct prev_cputime		prev_cputime;	/* prev_utime、prev_stime是先前的运行时间*/
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    	struct vtime			vtime;
    #endif
    
    #ifdef CONFIG_NO_HZ_FULL
    	atomic_t			tick_dep_mask;
    #endif
    	/* Context switch counts: */
    	unsigned long			nvcsw;		/* 自愿(voluntary)上下文切换计数*/
    	unsigned long			nivcsw;		/* 非自愿(involuntary)上下文切换计数*/
    
    	/* Monotonic time in nsecs: */
    	u64				start_time;			/* 进程创建时间*/
    
    	/* Boot based time in nsecs: */
    	u64				real_start_time;	/* 进程睡眠时间,还包含了进程睡眠时间,常用于/proc/pid/stat*/
    
    	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
    	unsigned long			min_flt;
    	unsigned long			maj_flt;
    
    #ifdef CONFIG_POSIX_TIMERS	/* 用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表*/
    	struct task_cputime		cputime_expires;
    	struct list_head		cpu_timers[3];
    #endif
    
    						/* Process credentials: */
    
    						/* Tracer's credentials at attach: */
    						const struct cred __rcu		*ptracer_cred;
    
    						/* Objective and real subjective task credentials (COW): */
    						const struct cred __rcu		*real_cred;
    
    						/* Effective (overridable) subjective task credentials (COW): */
    						const struct cred __rcu		*cred;
    
    						/*
    						 * executable name, excluding path.
    						 *
    						 * - normally initialized setup_new_exec()
    						 * - access it with [gs]et_task_comm()
    						 * - lock it with task_lock()
    						 */
    						char				comm[TASK_COMM_LEN];
    
    						struct nameidata		*nameidata;
    
    						#ifdef CONFIG_SYSVIPC	/* 进程通信(SYSVIPC)*/
    							struct sysv_sem			sysvsem;	
    							struct sysv_shm			sysvshm;
    						#endif
    						#ifdef CONFIG_DETECT_HUNG_TASK
    							unsigned long			last_switch_count;
    							unsigned long			last_switch_time;
    						#endif
    	/* Filesystem information: */
    	struct fs_struct		*fs;		/* 用来表示进程与文件系统的联系,包括当前目录和根目录*/
    
    	/* Open file information: */
    	struct files_struct		*files;		/* 表示进程当前打开的文件*/
    
    	/* 命名空间 : */		/* 进程通信(SYSVIPC)*/
    	struct nsproxy			*nsproxy;
    
    	/* Signal handlers: */
    	struct signal_struct		*signal;		/* signal: 指向进程的信号描述符*/
    	struct sighand_struct		*sighand;		/* sighand: 指向进程的信号处理程序描述符*/
    	sigset_t			blocked;				/* 表示被阻塞信号的掩码*/
    	sigset_t			real_blocked;			/* 表示临时掩码*/
    	/* Restored if set_restore_sigmask() was used: */
    	sigset_t			saved_sigmask;
    	struct sigpending		pending;			/* 存放私有挂起信号的数据结构*/
    	unsigned long			sas_ss_sp;			/* 信号处理程序备用堆栈的地址*/
    	size_t				sas_ss_size;			/* 表示堆栈的大小*/
    	unsigned int			sas_ss_flags;
    
    	struct callback_head		*task_works;
    			/* 进程审计 */
    			struct audit_context		*audit_context;
    		#ifdef CONFIG_AUDITSYSCALL
    			kuid_t				loginuid;
    			unsigned int			sessionid;	
    		#endif
    	struct seccomp			seccomp;	/* secure computing*/
    
    	/* Thread group tracking: */	/* 用于copy_process函数使用CLONE_PARENT标记时 */
    	u32				parent_exec_id;
    	u32				self_exec_id;
    
    	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
    	spinlock_t			alloc_lock;		/* 用于保护资源分配或释放的自旋锁*/
    
    	/* Protection of the PI data structures: */
    	raw_spinlock_t			pi_lock;	* task_rq_lock函数所使用的锁*/
    
    	struct wake_q_node		wake_q;
    
    					#ifdef CONFIG_RT_MUTEXES	/* 基于PI协议的等待互斥锁,其中PI指的是priority inheritance/9优先级继承)*/
    						/* PI waiters blocked on a rt_mutex held by this task: */
    						struct rb_root_cached		pi_waiters;	
    						/* Updated under owner's pi_lock and rq lock */
    						struct task_struct		*pi_top_task;
    						/* Deadlock detection and priority inheritance handling: */
    						struct rt_mutex_waiter		*pi_blocked_on;
    					#endif
    
    					#ifdef CONFIG_DEBUG_MUTEXES
    						/* Mutex deadlock detection: */
    						struct mutex_waiter		*blocked_on;	/* 死锁检测*/
    					#endif
    
    					#ifdef CONFIG_TRACE_IRQFLAGS	/* 中断*/
    						unsigned int			irq_events;
    						unsigned long			hardirq_enable_ip;
    						unsigned long			hardirq_disable_ip;
    						unsigned int			hardirq_enable_event;
    						unsigned int			hardirq_disable_event;
    						int				hardirqs_enabled;
    						int				hardirq_context;
    						unsigned long			softirq_disable_ip;
    						unsigned long			softirq_enable_ip;
    						unsigned int			softirq_disable_event;
    						unsigned int			softirq_enable_event;
    						int				softirqs_enabled;
    						int				softirq_context;
    					#endif
    
    #ifdef CONFIG_LOCKDEP
    # define MAX_LOCK_DEPTH			48UL		/* lockdep*/
    	u64				curr_chain_key;
    	int				lockdep_depth;
    	unsigned int			lockdep_recursion;
    	struct held_lock		held_locks[MAX_LOCK_DEPTH];
    #endif
    
    #ifdef CONFIG_UBSAN
    	unsigned int			in_ubsan;
    #endif
    
    	/* Journalling filesystem info: JFS文件系统 */
    	void				*journal_info;
    
    	/* Stacked block device info: 块设备链表*/
    	struct bio_list			*bio_list;
    
    #ifdef CONFIG_BLOCK
    	/* Stack plugging: */
    	struct blk_plug			*plug;
    #endif
    
    	/* VM state:内存回收 */
    	struct reclaim_state		*reclaim_state;
    	/* 存放块设备I/O数据流量信息*/
    	struct backing_dev_info		*backing_dev_info;
    	/* I/O调度器所使用的信息 */
    	struct io_context		*io_context;
    
    	/* Ptrace state: */
    	unsigned long			ptrace_message;
    	kernel_siginfo_t		*last_siginfo;
    
    	struct task_io_accounting	ioac;
    					#ifdef CONFIG_PSI
    						/* Pressure stall state */
    						unsigned int			psi_flags;
    					#endif
    					#ifdef CONFIG_TASK_XACCT
    						/* Accumulated RSS usage: */
    						u64				acct_rss_mem1;
    						/* Accumulated virtual memory usage: */
    						u64				acct_vm_mem1;
    						/* stime + utime since last update: */
    						u64				acct_timexpd;
    					#endif
    					#ifdef CONFIG_CPUSETS
    						/* Protected by ->alloc_lock: */
    						nodemask_t			mems_allowed;
    						/* Seqence number to catch updates: */
    						seqcount_t			mems_allowed_seq;
    						int				cpuset_mem_spread_rotor;
    						int				cpuset_slab_spread_rotor;
    					#endif
    					#ifdef CONFIG_CGROUPS
    						/* Control Group info protected by css_set_lock: */
    						struct css_set __rcu		*cgroups;
    						/* cg_list protected by css_set_lock and tsk->alloc_lock: */
    						struct list_head		cg_list;
    					#endif
    					#ifdef CONFIG_X86_CPU_RESCTRL
    						u32				closid;
    						u32				rmid;
    					#endif
    					#ifdef CONFIG_FUTEX
    						struct robust_list_head __user	*robust_list;
    					#ifdef CONFIG_COMPAT
    						struct compat_robust_list_head __user *compat_robust_list;
    					#endif
    						struct list_head		pi_state_list;
    						struct futex_pi_state		*pi_state_cache;
    					#endif
    					#ifdef CONFIG_PERF_EVENTS
    						struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
    						struct mutex			perf_event_mutex;
    						struct list_head		perf_event_list;
    					#endif
    					#ifdef CONFIG_DEBUG_PREEMPT
    						unsigned long			preempt_disable_ip;
    					#endif
    #ifdef CONFIG_NUMA
    	/* Protected by alloc_lock: */
    	struct mempolicy		*mempolicy;
    	short				il_prev;
    	short				pref_node_fork;
    #endif
    #ifdef CONFIG_NUMA_BALANCING
    	int				numa_scan_seq;
    	unsigned int			numa_scan_period;
    	unsigned int			numa_scan_period_max;
    	int				numa_preferred_nid;
    	unsigned long			numa_migrate_retry;
    	/* Migration stamp: */
    	u64				node_stamp;
    	u64				last_task_numa_placement;
    	u64				last_sum_exec_runtime;
    	struct callback_head		numa_work;
    
    	struct numa_group		*numa_group;
    
    	/*
    	 * numa_faults is an array split into four regions:
    	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
    	 * in this precise order.
    	 *
    	 * faults_memory: Exponential decaying average of faults on a per-node
    	 * basis. Scheduling placement decisions are made based on these
    	 * counts. The values remain static for the duration of a PTE scan.
    	 * faults_cpu: Track the nodes the process was running on when a NUMA
    	 * hinting fault was incurred.
    	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
    	 * during the current scan window. When the scan completes, the counts
    	 * in faults_memory and faults_cpu decay and these values are copied.
    	 */
    	unsigned long			*numa_faults;
    	unsigned long			total_numa_faults;
    
    	/*
    	 * numa_faults_locality tracks if faults recorded during the last
    	 * scan window were remote/local or failed to migrate. The task scan
    	 * period is adapted based on the locality of the faults with different
    	 * weights depending on whether they were shared or private faults
    	 */
    	unsigned long			numa_faults_locality[3];
    
    	unsigned long			numa_pages_migrated;
    #endif /* CONFIG_NUMA_BALANCING */
    
    #ifdef CONFIG_RSEQ
    	struct rseq __user *rseq;
    	u32 rseq_len;
    	u32 rseq_sig;
    	/*
    	 * RmW on rseq_event_mask must be performed atomically
    	 * with respect to preemption.
    	 */
    	unsigned long rseq_event_mask;
    #endif
    
    	struct tlbflush_unmap_batch	tlb_ubc;
    
    	struct rcu_head			rcu;
    
    	/* Cache last used pipe for splice():管道  */
    	struct pipe_inode_info		*splice_pipe;	
    
    	struct page_frag		task_frag;
    
    #ifdef CONFIG_TASK_DELAY_ACCT
    	struct task_delay_info		*delays;		/* 延迟计数*/
    #endif
    
    #ifdef CONFIG_FAULT_INJECTION
    	int				make_it_fail;
    	unsigned int			fail_nth;
    #endif
    	/*
    	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
    	 * balance_dirty_pages() for a dirty throttling pause:
    	 */
    	int				nr_dirtied;
    	int				nr_dirtied_pause;
    	/* Start of a write-and-pause period: */
    	unsigned long			dirty_paused_when;
    
    #ifdef CONFIG_LATENCYTOP
    	int				latency_record_count;
    	struct latency_record		latency_record[LT_SAVECOUNT];
    #endif
    	/*
    	 * Time slack values; these are used to round up poll() and
    	 * select() etc timeout values. These are in nanoseconds.
    	 *	 time slack values,常用于poll和select函数
    	 */
    	u64				timer_slack_ns;
    	u64				default_timer_slack_ns;
    
    #ifdef CONFIG_KASAN
    	unsigned int			kasan_depth;
    #endif
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	/* Index of current stored address in ret_stack: */
    	int				curr_ret_stack;
    	int				curr_ret_depth;
    
    	/* Stack of return addresses for return function tracing:ftrace跟踪器 */
    	struct ftrace_ret_stack		*ret_stack;
    
    	/* Timestamp for last schedule: */
    	unsigned long long		ftrace_timestamp;
    
    	/*
    	 * Number of functions that haven't been traced
    	 * because of depth overrun:
    	 */
    	atomic_t			trace_overrun;
    
    	/* Pause tracing: */
    	atomic_t			tracing_graph_pause;
    #endif
    
    #ifdef CONFIG_TRACING
    	/* State flags for use by tracers: */
    	unsigned long			trace;
    
    	/* Bitmask and counter of trace recursion: */
    	unsigned long			trace_recursion;
    #endif /* CONFIG_TRACING */
    
    #ifdef CONFIG_KCOV
    	/* Coverage collection mode enabled for this task (0 if disabled): */
    	unsigned int			kcov_mode;
    
    	/* Size of the kcov_area: */
    	unsigned int			kcov_size;
    
    	/* Buffer for coverage collection: */
    	void				*kcov_area;
    
    	/* KCOV descriptor wired with this task or NULL: */
    	struct kcov			*kcov;
    #endif
    
    #ifdef CONFIG_MEMCG
    	struct mem_cgroup		*memcg_in_oom;
    	gfp_t				memcg_oom_gfp_mask;
    	int				memcg_oom_order;
    
    	/* Number of pages to reclaim on returning to userland: */
    	unsigned int			memcg_nr_pages_over_high;
    
    	/* Used by memcontrol for targeted memcg charge: */
    	struct mem_cgroup		*active_memcg;
    #endif
    
    #ifdef CONFIG_BLK_CGROUP
    	struct request_queue		*throttle_queue;
    #endif
    
    #ifdef CONFIG_UPROBES
    	struct uprobe_task		*utask;
    #endif
    #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
    	unsigned int			sequential_io;
    	unsigned int			sequential_io_avg;
    #endif
    #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    	unsigned long			task_state_change;
    #endif
    	int				pagefault_disabled;
    #ifdef CONFIG_MMU
    	struct task_struct		*oom_reaper_list;
    #endif
    #ifdef CONFIG_VMAP_STACK
    	struct vm_struct		*stack_vm_area;
    #endif
    #ifdef CONFIG_THREAD_INFO_IN_TASK
    	/* A live task holds one reference: */
    	atomic_t			stack_refcount;
    #endif
    #ifdef CONFIG_LIVEPATCH
    	int patch_state;
    #endif
    #ifdef CONFIG_SECURITY
    	/* Used by LSM modules for access restriction: */
    	void				*security;
    #endif
    
    #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
    	unsigned long			lowest_stack;
    	unsigned long			prev_lowest_stack;
    #endif
    
    
    
    
    
    	randomized_struct_fields_start 				/*M 随机分布,可以提高系统安全,防止黑客入侵 */
    	randomized_struct_fields_end
    
    	/* CPU-specific state of this task: Do not put anything below here! */
    	struct thread_struct		thread;
    
    	
    };
    
     sched_class: 该进程所属的调度类,目前内核中有实现以下四种: 
                1) static const struct sched_class fair_sched_class;
    			2) static const struct sched_class rt_sched_class;
                3) static const struct sched_class idle_sched_class;
                4) static const struct sched_class stop_sched_class;
    		
     policy
        policy表示进程的调度策略,目前主要有以下五种:
            1) #define SCHED_NORMAL        0: 用于普通进程,它们通过完全公平调度器来处理
            2) #define SCHED_FIFO        1: 先来先服务调度,由实时调度类处理
            3) #define SCHED_RR            2: 时间片轮转调度,由实时调度类处理
            4) #define SCHED_BATCH        3: 用于非交互、CPU使用密集的批处理进程,通过完全公平调度器来处理,调度决策对此类进程给与"冷处理",它们绝不会抢占CFS调度器处理的另一个进程,因此不会干扰交互式进程,如果不打算用nice降低进程的静态优先级,同时又不希望该进程影响系统的交互性,最适合用该调度策略
            5) #define SCHED_IDLE        5: 可用于次要的进程,其相对权重总是最小的,也通过完全公平调度器来处理。要注意的是,SCHED_IDLE不负责调度空闲进程,空闲进程由内核提供单独的机制来处理
        只有root用户能通过sched_setscheduler()系统调用来改变调度策略 
        */
    
    
  • 相关阅读:
    第四周:卷积神经网络 part3
    第四周作业:卷积神经网络学习part3
    视频学习--《 图像语义分割前沿进展》
    视频学习--《语义分割中的自注意力机制和低秩重建》
    第二次作业:卷积神经网络 part 1
    使用VGG模型迁移学习进行猫狗大战
    使用 VGG16 对 CIFAR10 分类
    CIFAR10 数据集分类
    MNIST数据集分类
    第一次作业:深度学习基础
  • 原文地址:https://www.cnblogs.com/DemonMaster/p/11783530.html
Copyright © 2020-2023  润新知