• 使用 VGG16 对 CIFAR10 分类


    1.定义 dataloader

    import torch
    import torchvision
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    import numpy as np
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    # 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
    
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
    
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
    testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
    
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
    testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
    
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    

    2.VGG 网络定义并初始化

    class VGG(nn.Module):
        def __init__(self):
            super(VGG, self).__init__()
            self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
            self.features = self._make_layers(cfg)
            self.classifier = nn.Linear(2048, 10)
    
        def forward(self, x):
            out = self.features(x)
            out = out.view(out.size(0), -1)
            out = self.classifier(out)
            return out
    
        def _make_layers(self, cfg):
            layers = []
            in_channels = 3
            for x in cfg:
                if x == 'M':
                    layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
                else:
                    layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                               nn.BatchNorm2d(x),
                               nn.ReLU(inplace=True)]
                    in_channels = x
            layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
            return nn.Sequential(*layers)
    # 网络放到GPU上
    net = VGG().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    

    3.网络训练

    for epoch in range(10):  # 重复多轮训练
        for i, (inputs, labels) in enumerate(trainloader):
            inputs = inputs.to(device)
            labels = labels.to(device)
            # 优化器梯度归零
            optimizer.zero_grad()
            # 正向传播 + 反向传播 + 优化 
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # 输出统计信息
            if i % 100 == 0:   
                print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))
    
    print('Finished Training')
    

    4.测试验证准确率

    correct = 0
    total = 0
    
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
    
    print('Accuracy of the network on the 10000 test images: %.2f %%' % (
        100 * correct / total))
    
  • 相关阅读:
    明明的随机数
    字符串大小写转换
    字符串合并处理
    【数据结构】c语言实现集合的交并差运算
    【数据结构】一元多项式
    【保存】
    {【保存】数据结构
    【java】关键字this怎么用?
    【数据结构】顺序表
    【JAVA】【作业向】第一题:本学期一班级有n名学生,m门课程。现要求对每门课程的成绩进行统计:平均成绩、最高成绩、最低成绩,并统计考试成绩的分布律。
  • 原文地址:https://www.cnblogs.com/lixinhh/p/13414346.html
Copyright © 2020-2023  润新知