• 使用VGG模型迁移学习进行猫狗大战


    import numpy as np
    import matplotlib.pyplot as plt
    import os
    import torch
    import torch.nn as nn
    import torchvision
    from torchvision import models,transforms,datasets
    import time
    import json
    
    # 判断是否存在GPU设备
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print('Using gpu: %s ' % torch.cuda.is_available())
    
    #1下载数据
    #! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
    #! unzip dogscats.zip
    
    #2数据处理
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    vgg_format = transforms.Compose([
                    transforms.CenterCrop(224),
                    transforms.ToTensor(),
                    normalize,
                ])
    
    data_dir = './dogscats'
    dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
             for x in ['train', 'valid']}
    
    dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
    dset_classes = dsets['train'].classes
    
    # 通过下面代码可以查看 dsets 的一些属性
    print(dsets['train'].classes)
    print(dsets['train'].class_to_idx)
    print(dsets['train'].imgs[:5])
    print('dset_sizes: ', dset_sizes)
    
    loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
    loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)
    
    #valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
    同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
    count = 1
    for data in loader_valid:
        print(count, end='
    ')
        if count == 1:
            inputs_try,labels_try = data
        count +=1
    
    print(labels_try)
    print(inputs_try.shape)
    
    # 显示图片的小程序
    
    def imshow(inp, title=None):
    #   Imshow for Tensor.
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = np.clip(std * inp + mean, 0,1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)  # pause a bit so that plots are updated
    
    # 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
    out = torchvision.utils.make_grid(inputs_try)
    imshow(out, title=[dset_classes[x] for x in labels_try])
    
    #3创建VGG Model
    !wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
    
    model_vgg = models.vgg16(pretrained=True)
    
    with open('./imagenet_class_index.json') as f:
        class_dict = json.load(f)
    dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]
    
    inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
    model_vgg = model_vgg.to(device)
    
    outputs_try = model_vgg(inputs_try)
    
    print(outputs_try)
    print(outputs_try.shape)
    
    #为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
    
    m_softm = nn.Softmax(dim=1)
    probs = m_softm(outputs_try)
    vals_try,pred_try = torch.max(probs,dim=1)
    
    print( 'prob sum: ', torch.sum(probs,1))
    print( 'vals_try: ', vals_try)
    print( 'pred_try: ', pred_try)
    
    print([dic_imagenet[i] for i in pred_try.data])
    imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
           title=[dset_classes[x] for x in labels_try.data.cpu()])
    
    #4修改最后一层
    print(model_vgg)
    
    model_vgg_new = model_vgg;
    
    for param in model_vgg_new.parameters():
        param.requires_grad = False
    model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
    model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)
    
    model_vgg_new = model_vgg_new.to(device)
    
    print(model_vgg_new.classifier)
    
    #5训练并测试
    #第一步:创建损失函数和优化器
    criterion = nn.NLLLoss()
    # 学习率
    lr = 0.001
    # 随机梯度下降
    optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)
    
    #第二步:训练模型
    def train_model(model,dataloader,size,epochs=1,optimizer=None):
        model.train()
       
        for epoch in range(epochs):
            running_loss = 0.0
            running_corrects = 0
            count = 0
            for inputs,classes in dataloader:
                inputs = inputs.to(device)
                classes = classes.to(device)
                outputs = model(inputs)
                loss = criterion(outputs,classes)           
                optimizer = optimizer
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                _,preds = torch.max(outputs.data,1)
                # statistics
                running_loss += loss.data.item()
                running_corrects += torch.sum(preds == classes.data)
                count += len(inputs)
                print('Training: No. ', count, ' process ... total: ', size)
            epoch_loss = running_loss / size
            epoch_acc = running_corrects.data.item() / size
            print('Loss: {:.4f} Acc: {:.4f}'.format(
                         epoch_loss, epoch_acc))
               
    # 模型训练
    train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
                optimizer=optimizer_vgg)
    
    def test_model(model,dataloader,size):
        model.eval()
        predictions = np.zeros(size)
        all_classes = np.zeros(size)
        all_proba = np.zeros((size,2))
        i = 0
        running_loss = 0.0
        running_corrects = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            predictions[i:i+len(classes)] = preds.to('cpu').numpy()
            all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
            all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
            i += len(classes)
            print('Testing: No. ', i, ' process ... total: ', size)        
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                         epoch_loss, epoch_acc))
        return predictions, all_proba, all_classes
      
    predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])
    
    #6可视化
    # 单次可视化显示的图片个数
    n_view = 8
    correct = np.where(predictions==all_classes)[0]
    from numpy.random import random, permutation
    idx = permutation(correct)[:n_view]
    print('random correct idx: ', idx)
    loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                      batch_size = n_view,shuffle=True)
    for data in loader_correct:
        inputs_cor,labels_cor = data
    # Make a grid from batch
    out = torchvision.utils.make_grid(inputs_cor)
    imshow(out, title=[l.item() for l in labels_cor])
    
  • 相关阅读:
    Git SVN 版本控制 简介 总结 MD
    shape selector 背景 圆形 矩形 圆环 [MD]
    eclipse library jar包 使用总结 MD
    Visitor 访问者模式 [MD]
    BlazeMeter+Jmeter 搭建接口测试框架
    nGrinder 简易使用教程
    65个面试常见问题技巧回答(绝对实用)
    [面试技巧]16个经典面试问题回答思路
    质量模型测试电梯
    linux apache服务器优化建议整理(很实用)
  • 原文地址:https://www.cnblogs.com/lixinhh/p/13414357.html
Copyright © 2020-2023  润新知