代码学习
HybridSN高光谱分类网络
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
import spectral
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class_num = 16
class HybridSN(nn.Module):
def __init__(self):
super(HybridSN,self).__init__()
self.conv1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
self.bn1 = nn.BatchNorm3d(8)
self.conv2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
self.bn2 = nn.BatchNorm3d(16)
self.conv3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
self.bn3 = nn.BatchNorm3d(32)
self.conv4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
self.bn4 = nn.BatchNorm2d(64)
self.fc1 = nn.Linear(18496,256)
self.fc2 = nn.Linear(256,128)
self.fc3 = nn.Linear(128,16)
self.drop = nn.Dropout(0.4)
def forward(self,x):
#三维卷积部分:
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = F.relu(self.bn3(self.conv3(out)))
#把前面的 32*18 reshape 一下,得到 (576, 19, 19)
out = out.reshape(out.shape[0],-1,19,19)
#二维卷积
out = F.relu(self.bn4(self.conv4(out)))
# flatten 操作,变为 18496 维的向量
out = out.reshape(out.shape[0],-1)
#全连接层
out = F.relu(self.drop(self.fc1(out)))
out = F.relu(self.drop(self.fc2(out)))
out = self.fc3(out)
return out
# 对高光谱数据 X 应用 PCA 变换
def applyPCA(X, numComponents):
newX = np.reshape(X, (-1, X.shape[2]))
pca = PCA(n_components=numComponents, whiten=True)
newX = pca.fit_transform(newX)
newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
return newX
# 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
def padWithZeros(X, margin=2):
newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
x_offset = margin
y_offset = margin
newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
return newX
# 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
# 给 X 做 padding
margin = int((windowSize - 1) / 2)
zeroPaddedX = padWithZeros(X, margin=margin)
# split patches
patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
patchIndex = 0
for r in range(margin, zeroPaddedX.shape[0] - margin):
for c in range(margin, zeroPaddedX.shape[1] - margin):
patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]
patchesData[patchIndex, :, :, :] = patch
patchesLabels[patchIndex] = y[r-margin, c-margin]
patchIndex = patchIndex + 1
if removeZeroLabels:
patchesData = patchesData[patchesLabels>0,:,:,:]
patchesLabels = patchesLabels[patchesLabels>0]
patchesLabels -= 1
return patchesData, patchesLabels
def splitTrainTestSet(X, y, testRatio, randomState=345):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
return X_train, X_test, y_train, y_test
# 地物类别
class_num = 16
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']
# 用于测试样本的比例
test_ratio = 0.90
# 每个像素周围提取 patch 的尺寸
patch_size = 25
# 使用 PCA 降维,得到主成分的数量
pca_components = 30
print('Hyperspectral data shape: ', X.shape)
print('Label shape: ', y.shape)
print('
... ... PCA tranformation ... ...')
X_pca = applyPCA(X, numComponents=pca_components)
print('Data shape after PCA: ', X_pca.shape)
print('
... ... create data cubes ... ...')
X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
print('Data cube X shape: ', X_pca.shape)
print('Data cube y shape: ', y.shape)
print('
... ... create train & test data ... ...')
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
print('Xtrain shape: ', Xtrain.shape)
print('Xtest shape: ', Xtest.shape)
# 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
Xtest = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
print('before transpose: Xtrain shape: ', Xtrain.shape)
print('before transpose: Xtest shape: ', Xtest.shape)
# 为了适应 pytorch 结构,数据要做 transpose
Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
Xtest = Xtest.transpose(0, 4, 3, 1, 2)
print('after transpose: Xtrain shape: ', Xtrain.shape)
print('after transpose: Xtest shape: ', Xtest.shape)
""" Training dataset"""
class TrainDS(torch.utils.data.Dataset):
def __init__(self):
self.len = Xtrain.shape[0]
self.x_data = torch.FloatTensor(Xtrain)
self.y_data = torch.LongTensor(ytrain)
def __getitem__(self, index):
# 根据索引返回数据和对应的标签
return self.x_data[index], self.y_data[index]
def __len__(self):
# 返回文件数据的数目
return self.len
""" Testing dataset"""
class TestDS(torch.utils.data.Dataset):
def __init__(self):
self.len = Xtest.shape[0]
self.x_data = torch.FloatTensor(Xtest)
self.y_data = torch.LongTensor(ytest)
def __getitem__(self, index):
# 根据索引返回数据和对应的标签
return self.x_data[index], self.y_data[index]
def __len__(self):
# 返回文件数据的数目
return self.len
# 创建 trainloader 和 testloader
trainset = TrainDS()
testset = TestDS()
train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(dataset=testset, batch_size=128, shuffle=False, num_workers=2)
# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 网络放到GPU上
net = HybridSN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
net.train()
# 开始训练
total_loss = 0
for epoch in range(100):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# 优化器梯度归零
optimizer.zero_grad()
# 正向传播 + 反向传播 + 优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
print('[Epoch: %d] [loss avg: %.4f] [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))
print('Finished Training')
net.eval()
count = 0
# 模型测试
for inputs, _ in test_loader:
inputs = inputs.to(device)
outputs = net(inputs)
outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
if count == 0:
y_pred_test = outputs
count = 1
else:
y_pred_test = np.concatenate( (y_pred_test, outputs) )
# 生成分类报告
classification = classification_report(ytest, y_pred_test, digits=4)
print(classification)
多次测试后结果:0.9719 0.9730 0.9732
测试结果不稳定,上网查询,在训练模型时会在前面加上:
model.train()
在测试模型时在前面使用:
model.eval()
这两个方法是针对在网络训练和测试时采用不同方式的情况,比如Batch Normalization
和 Dropout
。
- 训练时是针对每个min-batch的,但是在测试中往往是针对单张图片,即不存在min-batch的概念。由于网络训练完毕后参数都是固定的,因此每个批次的均值和方差都是不变的,因此直接结算所有batch的均值和方差。所有Batch Normalization的训练和测试时的操作不同
- 在训练中,每个隐层的神经元先乘概率P,然后在进行激活,在测试中,所有的神经元先进行激活,然后每个隐层神经元的输出乘P。
添加后结果稳定为:0.9792
SENet实现
将SE模块添加到上述HybridSN网络后面两个2D卷积中,添加的SE模块及修改后的HybridSN网络:
class_num = 16
class SEBlock(nn.Module):
def __init__(self,channel,r=16):
super(SEBlock,self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(channel,round(channel/r))
self.fc2 = nn.Linear(round(channel/r),channel)
def forward(self,x):
out = self.avg_pool(x)
out = out.view(out.shape[0],-1)
out = F.relu(self.fc1(out))
out = F.sigmoid(self.fc2(out))
out = out.view(x.shape[0],x.shape[1],1,1)
out = x * out
return out
class HybridSN(nn.Module):
def __init__(self):
super(HybridSN,self).__init__()
self.conv1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
self.bn1 = nn.BatchNorm3d(8)
self.conv2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
self.bn2 = nn.BatchNorm3d(16)
self.conv3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
self.bn3 = nn.BatchNorm3d(32)
self.conv4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
self.SElayer = SEBlock(64,16)
self.bn4 = nn.BatchNorm2d(64)
self.fc1 = nn.Linear(18496,256)
self.fc2 = nn.Linear(256,128)
self.fc3 = nn.Linear(128,16)
self.dropout = nn.Dropout(0.4)
def forward(self,x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = F.relu(self.bn3(self.conv3(out)))
out = out.reshape(out.shape[0],-1,19,19)
out = F.relu(self.bn4(self.conv4(out)))
out = self.SElayer(out)
out = out.reshape(out.shape[0],-1)
out = F.relu(self.dropout(self.fc1(out)))
out = F.relu(self.dropout(self.fc2(out)))
out = self.fc3(out)
return out
测试结果:0.9870
SENet的提升分类性能的本质原理:Excitation使用全连接神经网络,对Sequeeze后的结果做非线性变换,,之后使用Excitation得到的结果作为权重,乘到输入特征上,提升有效特征,抑制无效特征。
视频学习
1、《语义分割中的自注意力机制和低秩重建》-李夏 链接
2、《 图像语义分割前沿进展》-程明明 链接