• 【33.18%】【hdu 5877】Weak Pair (3种解法)


    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1637    Accepted Submission(s): 531


    Problem Description
    You are given a rooted tree of N nodes, labeled from 1 to N. To the ith node a non-negative value ai is assigned.An ordered pair of nodes (u,v) is said to be weak if
      (1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
      (2) au×avk.

    Can you find the number of weak pairs in the tree?
     

    Input
    There are multiple cases in the data set.
      The first line of input contains an integer T denoting number of test cases.
      For each case, the first line contains two space-separated integers, N and k, respectively.
      The second line contains N space-separated integers, denoting a1 to aN.
      Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v.

      Constrains: 
      
      1N105 
      
      0ai109 
      
      0k1018
     

    Output
    For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.
     

    Sample Input
    1 2 3 1 2 1 2
     

    Sample Output
    1
     

    Source
     

    【题解】

    这道题的意思是,这两个条件同时满足才是一对weak pair,而不是说其中之一。

    解法是,从根节点往下遍历树。


    可以看到我们的遍历顺序是1->2->3.

    然后我们把之前走过的点记在栈中(实际上dfs本身就是利用栈),然后走到3,之前的点就都是3的祖先了。

    但是有个问题就是,当我们走到4之后。3也在栈中。而3不是4的祖先。于是我们要把3给退栈,实现方法如下。

    void dfs(int x)

    {
    查找某种数据结构中小于等于k/a[x]的元素个数

    把当前点加入到某种数据结构中

    dfs(儿子);

    把当前点从某种数据结构中退出来。

    }

    可以选用的数据结构

    1.平衡树

    平衡树的话应该就很好理解了吧。

    就是把某个节点加入平衡树。查找小于m的值。然后把某个节点删掉。

    这三个操作不会难。

    (这里用的是SBT)

    2.树状数组

    因为ai过大。所以需要用到离散化的思想。

    具体的实现方法:

    seq[1..n]存a[1..n]

    在seq[n+1..2*n]存k/a[i-n](i∈[n+1..2*n]),特殊的,如果a[i-n]==0,则seq[i] = INF.

    然后把seq数组升序排。

    然后当我们要找小于等于k/a[x]加入的时候。就在seq数组中索引k/a[x]的下标key。

    因为k/a[x]也加进去了。所以如果要找小于等于k/a[x]的数则只要获取前缀和就可以了。

    然后把a[x]加入,就索引seq中a[x]的下标key2.然后递增其值,然后修改与其相关的点。

    把a[x]删去,就仍索引seq中a[x]的下标(其实已经索引过了就是key2),然后递减其值,再修改相关点。

    3.线段树

    仍然按照树状数组的方法离散化。然后就是把树状数组改成线段树了而已。单点递增。很容易的。直接递增答案query(1,key)即可;

    【代码1】平衡树

    #include <cstdio>
    #include <cstring>
    #include <vector>
    
    const int MAXN = 100009;
    
    using namespace std;
    
    int T, n, father[MAXN], root_tree, root;
    int si_ze[MAXN * 2], l[MAXN * 2], r[MAXN * 2], totn = 0;
    __int64 key[MAXN * 2], k, seq[MAXN], ans = 0;
    vector <int> son[MAXN];
    
    void init()
    {
    	memset(father, 0, sizeof(father));
    	for (int i = 1; i <= 100000; i++)
    		son[i].clear();
    	root = 0;
    	totn = 0;
    	ans = 0;
    }
    
    void input_data()
    {
    	scanf("%d%I64d", &n, &k);
    	for (int i = 1; i <= n; i++)
    		scanf("%I64d", &seq[i]);
    	int u, v;
    	for (int i = 1; i <= n - 1; i++)
    	{
    		scanf("%d%d", &u, &v);
    		father[v] = u;
    		son[u].push_back(v);
    	}
    	for (int i = 1; i <= n; i++)//找根节点
    		if (father[i] == 0)
    		{
    			root_tree = i;
    			break;
    		}
    }
    
    void right_rotation(int &t)//右旋
    {
    	int k = l[t];
    	l[t] = r[k];
    	r[k] = t;
    	si_ze[k] = si_ze[t];
    	si_ze[t] = si_ze[l[t]] + si_ze[r[t]] + 1;
    	t = k;
    }
    
    void left_rotation(int &t) //左旋
    {
    	int k = r[t];
    	r[t] = l[k];
    	l[k] = t;
    	si_ze[k] = si_ze[t];
    	si_ze[t] = si_ze[l[t]] + si_ze[r[t]] + 1;
    	t = k;
    }
    
    void maintain(int &t, bool flag)
    {
    	if (flag)
    	{
    		if (si_ze[l[l[t]]] > si_ze[r[t]]) // 这是/型
    			right_rotation(t);
    		else
    			if (si_ze[r[l[t]]] > si_ze[r[t]])//....
    			{
    				left_rotation(l[t]);
    				right_rotation(t);
    			}
    			else
    				return;//是平衡的就结束
    	}
    	else
    	{
    		if (si_ze[r[r[t]]] > si_ze[l[t]])
    			left_rotation(t);
    		else
    			if (si_ze[l[r[t]]] > si_ze[l[t]])
    			{
    				right_rotation(r[t]);
    				left_rotation(t);
    			}
    			else
    				return;
    	}
    	maintain(l[t], true);
    	maintain(r[t], false);
    	maintain(t, true);
    	maintain(t, false);
    }
    
    void insert(int &t, __int64 data2)
    {
    	if (t == 0)
    	{
    		t = ++totn;
    		l[t] = r[t] = 0;
    		si_ze[t] = 1;
    		key[t] = data2;
    	}
    	else
    	{
    		si_ze[t]++;
    		if (data2 < key[t])
    			insert(l[t], data2);
    		else
    			insert(r[t], data2);
    		maintain(t, data2 < key[t]);
    	}
    }
    
    void de_lete(__int64 data2, int &t) 
    {
    	si_ze[t]--;
    	if (data2 == key[t])
    	{
    		bool flag1 = true, flag2 = true;//用于判断有无左右子树。
    		if (l[t] == 0)
    			flag1 = false;
    		if (r[t] == 0)
    			flag2 = false;
    		if (!flag1 && !flag2)
    			t = 0;
    		else
    			if (!flag1 && flag2)
    				t = r[t];
    			else
    				if (flag1 && !flag2)
    					t = l[t];
    				else
    					if (flag1 && flag2)
    					{
    						int temp = r[t];
    						while (l[temp])
    							temp = l[temp];
    						key[t] = key[temp];
    						de_lete(key[temp], r[t]);
    					}
    	}
    	else
    		if (data2 < key[t])
    			de_lete(data2, l[t]);
    		else
    			de_lete(data2, r[t]);
    }
    
    __int64 find(__int64 what, int &t)
    {
    	if (t == 0)
    		return 0;
    	__int64 temp = 0;
    	if (what >= key[t]) //左子树加上这个节点都小于等于what满足要求
    	{
    		temp += si_ze[l[t]] + 1;
    		temp += find(what, r[t]);
    	}
    	else
    		return find(what, l[t]);
    	return temp;
    }
    
    void dfs(int rt)
    {
    	__int64 temp = k / seq[rt];
    	if (seq[rt] == 0)
    		temp = 2100000000;//这里temp本应改成1e19的,但是貌似也对了。。
    	ans += find(temp, root);
    	insert(root, seq[rt]);
    	int len = son[rt].size();
    	for (int i = 0; i <= len - 1; i++)
    		dfs(son[rt][i]);
    	de_lete(seq[rt], root);
    }
    
    void output_ans()
    {
    	printf("%I64d
    ", ans);
    }
    
    int main()
    {
    	//freopen("F:\rush.txt", "r", stdin);
    	//freopen("F:\rush_out.txt", "w", stdout);
    	scanf("%d", &T);
    	while (T--)
    	{
    		init();
    		input_data();
    		dfs(root_tree);
    		output_ans();
    	}
    	return 0;
    }

    【代码2】树状数组

    #include <cstdio>
    #include <algorithm>
    #include <vector>
    
    using namespace std;
    
    const int MAXN = 101000;
    const long long INF = 10000000000000000000;
    
    
    int c[MAXN * 2], a[MAXN], father[MAXN], n, lena;
    long long seq[MAXN * 2], ans = 0, k;
    vector <int> son[MAXN];
    
    void init()
    {
    	ans = 0;
    	memset(c, 0, sizeof(c));
    	memset(father, 0, sizeof(father));
    	for (int i = 1; i <= 100010; i++)
    		son[i].clear();
    }
    
    void input_data()
    {
    	scanf("%d%I64d", &n, &k);
    	for (int i = 1; i <= n; i++)
    	{
    		scanf("%d", &a[i]);
    		seq[i] = a[i];
    	}
    	for (int i = n + 1; i <= 2 * n; i++)
    	{
    		long long temp = a[i - n];
    		if (a[i - n] == 0) //除0就改为无限大
    			seq[i] = INF;
    		else
    			seq[i] = k / temp;
    	}
    	sort(seq + 1, seq + 1 + n * 2);
    	//可能有重复的,但没关系,lower_bound返回的是一个特定值(seq是不会发生变化的)
    	lena = 2 * n;
    }
    
    int lowbit(int x)
    {
    	return x & -x;
    }
    
    void dfs(int x)
    {
    	int key;
    	if (a[x] == 0)
    		key = lower_bound(seq + 1, seq + 1 + 2 * n, INF) - seq;
    	else
    		key = lower_bound(seq + 1, seq + 1 + 2 * n, k / a[x]) - seq;
    	long long temp2 = 0;
    	while (key)
    	{
    		temp2 += c[key];
    		key = key - lowbit(key);
    	}
    	ans += temp2;
    	key = lower_bound(seq + 1, seq + 1 + 2 * n, a[x]) - seq;
    	int temp = key;
    	while (temp <= lena)
    	{
    		c[temp]++;
    		temp += lowbit(temp);
    	}
    	int len = son[x].size();
    	for (int i = 0; i <= len - 1; i++)
    		dfs(son[x][i]);
    	while (key <= lena)
    	{
    		c[key]--;
    		key += lowbit(key);
    	}
    }
    
    void get_ans()
    {
    	int root = 1;
    	for (int i = 1; i <= n - 1; i++)
    	{
    		int u, v;
    		scanf("%d %d", &u, &v);
    		father[v] = u;
    		son[u].push_back(v);
    	}
    	for (int i = 1; i <= n; i++)
    		if (father[i] == 0)
    		{
    			root = i;
    		}
    	dfs(root);
    }
    
    void output_ans()
    {
    	printf("%I64d
    ", ans);
    }
    
    int main()
    {
    	//freopen("F:\rush.txt", "r", stdin);
    	//freopen("F:\rush_out.txt", "w", stdout);
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		init();
    		input_data();
    		get_ans();
    		output_ans();
    	}
    	return 0;
    }

    【代码3】线段树,基础的单点递增

    #include <cstdio>
    #include <algorithm>
    #include <vector>
    #define lson begin, m, rt << 1
    #define rson m+1,end,rt<<1|1
    
    using namespace std;
    
    const int MAXN = 101000;
    const long long INF = 10000000000000000000;
    
    
    int  a[MAXN], father[MAXN], n, lena, sum[MAXN * 2 * 4]; //记住要开4倍
    long long seq[MAXN * 2], ans = 0, k;
    vector <int> son[MAXN];
    
    void build(int begin, int end, int rt)
    {
    	sum[rt] = 0;
    	if (begin == end)
    		return;
    	int m = (begin + end) >> 1;
    	build(lson);
    	build(rson);
    }
    
    void init()
    {
    	ans = 0;
    	memset(father, 0, sizeof(father));
    	for (int i = 1; i <= 100010; i++)
    		son[i].clear();
    }
    
    void input_data()
    {
    	scanf("%d%I64d", &n, &k);
    	for (int i = 1; i <= n; i++)
    	{
    		scanf("%d", &a[i]);
    		seq[i] = a[i];
    	}
    	for (int i = n + 1; i <= 2 * n; i++)
    	{
    		long long temp = a[i - n];
    		if (a[i - n] == 0)
    			seq[i] = INF;
    		else
    			seq[i] = k / temp;
    	}
    	sort(seq + 1, seq + 1 + n * 2);
    	lena = 2 * n;
    	build(1, lena, 1);
    }
    
    long long query(int l, int r, int begin, int end, int rt)//求区间和。
    {
    	if (l <= begin && end <= r)
    		return sum[rt];
    	int m = (begin + end) >> 1;
    	long long temp = 0;
    	if (l <= m)
    		temp += query(l, r, lson);
    	if (m < r)
    		temp += query(l, r, rson);
    	return temp;
    }
    
    void push_up(int rt)
    {
    	sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
    }
    
    void updata(int pos, int num, int begin, int end, int rt)
    {
    	if (begin == end)
    	{
    		sum[rt] += num;
    		return;
    	}
    	int m = (begin + end) >> 1;
    	if (pos <= m)
    		updata(pos, num, lson);
    	else
    		updata(pos, num, rson);
    	push_up(rt);
    }
    
    void dfs(int x)
    {
    	int key;
    	if (a[x] == 0)
    		key = lower_bound(seq + 1, seq + 1 + 2 * n, INF) - seq;
    	else
    		key = lower_bound(seq + 1, seq + 1 + 2 * n, k / a[x]) - seq;
    	long long temp2 = query(1, key, 1, lena, 1);
    	ans += temp2;
    	key = lower_bound(seq + 1, seq + 1 + 2 * n, a[x]) - seq;
    	updata(key, 1, 1, lena, 1);
    	int len = son[x].size();
    	for (int i = 0; i <= len - 1; i++)
    		dfs(son[x][i]);
    	updata(key, -1, 1, lena, 1);
    }
    
    void get_ans()
    {
    	int root = 1;
    	for (int i = 1; i <= n - 1; i++)
    	{
    		int u, v;
    		scanf("%d %d", &u, &v);
    		father[v] = u;
    		son[u].push_back(v);
    	}
    	for (int i = 1; i <= n; i++)
    		if (father[i] == 0)
    		{
    			root = i;
    		}
    	dfs(root);
    }
    
    void output_ans()
    {
    	printf("%I64d
    ", ans);
    }
    
    int main()
    {
    	//freopen("F:\rush.txt", "r", stdin);
    	//freopen("F:\rush_out.txt", "w", stdout);
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		init();
    		input_data();
    		get_ans();
    		output_ans();
    	}
    	return 0;
    }


  • 相关阅读:
    Lesson 61-62 Are Relatives Important to You?
    Lesson 59-60 Househusband
    Lesson 57-58 Cosmetic Surgery
    Lesson 55-56 TV Commercials
    Blash
    高维宇宙
    巴卡尔
    完美标号
    小A点菜(luogu 1164)简单DP
    聪明的质监员(qc)
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632260.html
Copyright © 2020-2023  润新知