Description
存在如下递推式:
F(n+1)=A1*F(n)+A2*F(n-1)+…+An*F(1)
F(n+2)=A1*F(n+1)+A2*F(n)+…+An*F(2)
…
求第K项的值对1000000007取模的结果
Input
单组测试数据
第一行输入两个整数 n , k (1<=n<=100,n < k<=10000000000)
第二行输入 n 个整数 F(1) F(2) … F(n)
第三行输入 n 个整数A1 A2 … An
Output
输出一个整数
Sample Input
2 3
1 2
3 4
Sample Output
10
【题目链接】:http://oj.acmclub.cn/problem.php?cid=1162&pid=5
【题意】
【题解】
一道裸的矩阵乘法题;
构造一个系数矩阵
0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1
a[n] a[n-1] a[n-2]... a[1]
(这个矩阵每乘一次(f[1],f[2],f[3]…f[n])就会往后递推一个n)
对于k>n的询问
求这个矩阵的(k-n)次幂;
然后把最后的矩阵的最后一行依次乘上f[1],f[2]…f[n]相加;
就是f[k]了;
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 110;
const int G = 100; //矩阵大小
const LL MOD = 1e9 + 7; //模数
struct MX
{
int v[G+5][G+5];
void O() { ms(v, 0); }
void E() { ms(v, 0); for (int i = 1; i <= G; ++i)v[i][i] = 1; }
void P()
{
for (int i = 1; i <= G; ++i)
{
for (int j = 1; j <= G; ++j)printf("%d ", v[i][j]); puts("");
}
}
MX operator * (const MX &b) const
{
MX c; c.O();
for (int k = 1; k <= G; ++k)
{
for (int i = 1; i <= G; ++i) if (v[i][k])
{
for (int j = 1; j <= G; ++j)
{
c.v[i][j] = (c.v[i][j] + (LL)v[i][k] * b.v[k][j]) % MOD;
}
}
}
return c;
}
MX operator + (const MX &b) const
{
MX c; c.O();
for (int i = 1; i <= G; ++i)
{
for (int j = 1; j <= G; ++j)
{
c.v[i][j] = (v[i][j] + b.v[i][j]) % MOD;
}
}
return c;
}
MX operator ^ (LL p) const
{
MX y; y.E();
MX x; memcpy(x.v, v, sizeof(v));
while (p)
{
if (p&1) y = y*x;
x = x*x;
p>>=1;
}
return y;
}
}xishu;
int n;
LL k,f[N],a[N];
int main(){
//Open();
Close();
cin >> n >> k;
rep1(i,1,n) cin >> f[i];
rep1(i,1,n) cin >> a[i];
rep1(i,1,n) xishu.v[n][i] = a[n-i+1];
rep1(i,1,n-1) xishu.v[i][i+1] = 1;
if (k<=n){
cout << f[k]%MOD << endl;
return 0;
}
xishu = xishu^(k-n);
LL ans = 0;
rep1(i,1,n)
ans = (ans + xishu.v[n][i]*f[i])%MOD;
cout << ans << endl;
return 0;
}