• 机器学习-降低维度算法


    像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。

    常见的算法包括:主成份分析,偏最小二乘回归, Sammon映射,多维尺度,  投影追踪等。

    from __future__ import print_function
    from sklearn import datasets
    import matplotlib.pyplot as plt
    import matplotlib.cm as cmx
    import matplotlib.colors as colors
    import numpy as np
    
    
    
    
    def shuffle_data(X, y, seed=None):
        if seed:
            np.random.seed(seed)
    
        idx = np.arange(X.shape[0])
        np.random.shuffle(idx)
    
        return X[idx], y[idx]
    
    
    
    # 正规化数据集 X
    def normalize(X, axis=-1, p=2):
        lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
        lp_norm[lp_norm == 0] = 1
        return X / np.expand_dims(lp_norm, axis)
    
    
    # 标准化数据集 X
    def standardize(X):
        X_std = np.zeros(X.shape)
        mean = X.mean(axis=0)
        std = X.std(axis=0)
    
        # 做除法运算时请永远记住分母不能等于0的情形
        # X_std = (X - X.mean(axis=0)) / X.std(axis=0)
        for col in range(np.shape(X)[1]):
            if std[col]:
                X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
    
        return X_std
    
    
    # 划分数据集为训练集和测试集
    def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
        if shuffle:
            X, y = shuffle_data(X, y, seed)
    
        n_train_samples = int(X.shape[0] * (1-test_size))
        x_train, x_test = X[:n_train_samples], X[n_train_samples:]
        y_train, y_test = y[:n_train_samples], y[n_train_samples:]
    
        return x_train, x_test, y_train, y_test
    
    
    
    # 计算矩阵X的协方差矩阵
    def calculate_covariance_matrix(X, Y=np.empty((0,0))):
        if not Y.any():
            Y = X
        n_samples = np.shape(X)[0]
        covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
    
        return np.array(covariance_matrix, dtype=float)
    
    
    # 计算数据集X每列的方差
    def calculate_variance(X):
        n_samples = np.shape(X)[0]
        variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
        return variance
    
    
    # 计算数据集X每列的标准差
    def calculate_std_dev(X):
        std_dev = np.sqrt(calculate_variance(X))
        return std_dev
    
    
    # 计算相关系数矩阵
    def calculate_correlation_matrix(X, Y=np.empty([0])):
        # 先计算协方差矩阵
        covariance_matrix = calculate_covariance_matrix(X, Y)
        # 计算X, Y的标准差
        std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
        std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
        correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))
    
        return np.array(correlation_matrix, dtype=float)
    
    
    
    class PCA():
        """
        主成份分析算法PCA,非监督学习算法.
        """
        def __init__(self):
            self.eigen_values = None
            self.eigen_vectors = None
            self.k = 2
    
        def transform(self, X):
            """
            将原始数据集X通过PCA进行降维
            """
            covariance = calculate_covariance_matrix(X)
    
            # 求解特征值和特征向量
            self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)
    
            # 将特征值从大到小进行排序,注意特征向量是按列排的,即self.eigen_vectors第k列是self.eigen_values中第k个特征值对应的特征向量
            idx = self.eigen_values.argsort()[::-1]
            eigenvalues = self.eigen_values[idx][:self.k]
            eigenvectors = self.eigen_vectors[:, idx][:, :self.k]
    
            # 将原始数据集X映射到低维空间
            X_transformed = X.dot(eigenvectors)
    
            return X_transformed
    
    
    def main():
        # Load the dataset
        data = datasets.load_iris()
        X = data.data
        y = data.target
    
        # 将数据集X映射到低维空间
        X_trans = PCA().transform(X)
    
        x1 = X_trans[:, 0]
        x2 = X_trans[:, 1]
    
        cmap = plt.get_cmap('viridis')
        colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]
    
        class_distr = []
        # Plot the different class distributions
        for i, l in enumerate(np.unique(y)):
            _x1 = x1[y == l]
            _x2 = x2[y == l]
            _y = y[y == l]
            class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))
    
        # Add a legend
        plt.legend(class_distr, y, loc=1)
    
        # Axis labels
        plt.xlabel('Principal Component 1')
        plt.ylabel('Principal Component 2')
        plt.show()
    
    
    if __name__ == "__main__":
        main()
  • 相关阅读:
    Oracle-通过创建索引加快SQL执行效率
    Oracle-DG,MRP进程无法正常应用问题处理,重启大法好
    Oracle-DG,12c pdb创建测试
    Oracle-DG,疑问主库添加日志后,备库未操作主库日志比备库日志数量多,有什么影响?
    Oracle-DG疑问,什么情况下主库会发出一个会话连接备库
    Oracle-DG 主库将log_archive_dest_state_2远程归档线程参数设置为defer,为什么dg还是处于实时同步状态?
    Oracle-rm误删除数据文件,如何强制删除文件启动db
    Oracle-buffer cache过小导致SQL执行时间长
    win10下完全卸载-重装MySQL
    VSCode配置详细教程
  • 原文地址:https://www.cnblogs.com/520520520zl/p/14299436.html
Copyright © 2020-2023  润新知