• BZOJ 1176 Mokia CDQ分治+树状数组


    1176: [Balkan2007]Mokia

    Time Limit: 30 Sec  Memory Limit: 162 MB
    Submit: 1854  Solved: 821
    [Submit][Status][Discuss]

    Description

    维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

    Input

    第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

    接下来每行为一下三种输入之一(不包含引号):

    "1 x y a"

    "2 x1 y1 x2 y2"

    "3"

    输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

    输入2:你需要求出以左上角为(x1,y1),右下角为(x2,y2)的矩阵内所有格子的权值和,并输出

    输入3:表示输入结束

    Output

    对于每个输入2,输出一行,即输入2的答案

    Sample Input

    0 4
    1 2 3 3
    2 1 1 3 3
    1 2 2 2
    2 2 2 3 4
    3

    Sample Output

    3
    5

    HINT

    保证答案不会超过int范围

    Solution  

    CDQ分治+树状数组裸题,矩阵分成四个点统计,单点更新。

    Code

    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <algorithm>
    #include <iostream>
    
    using namespace std;
    
    const int maxn = 2000005;
    const int maxm = 160000+10005;
    int s, w, ans[maxm];
    struct Node
    {
        int op, id, x, y, k, to;
        Node (int op = 0, int id = 0, int x = 0, int y = 0, int k = 0, int to = 0):
            op(op), id(id), x(x), y(y), k(k), to(to) {}
        bool operator < (const Node &AI) const
        {
            if (x == AI.x && y == AI.y)
                return op < AI.op;
            if (x == AI.x)
                return y < AI.y;
            return x < AI.x;
        }
    }q[maxm], temp[maxm];
    struct BIT
    {
        int c[maxn+10];
        int lowbit(int x)
        {
            return x & -x;
        }
        void update(int x, int d)
        {
            while (x <= w)
            {
                c[x] += d;
                x += lowbit(x);
            }
        }
        int query(int x)
        {
            int ret = 0;
            while (x > 0)
            {
                ret += c[x];
                x -= lowbit(x);
            }
            return ret;
        }
    }T;
    
    void cdq(int l, int r)
    {
        if (l == r)
            return ;
        int mid = (l+r)>>1;
        for (int i = l; i <= r; ++i)
        {
            if (q[i].id <= mid && q[i].op == 1)
                T.update(q[i].y, q[i].k);
            if (q[i].id > mid && q[i].op == 2)
                ans[q[i].to] += q[i].k*T.query(q[i].y);
        }
        for (int i = l; i <= r; ++i)
            if (q[i].id <= mid && q[i].op == 1)
                T.update(q[i].y, -q[i].k);
        int t1 = l-1, t2 = mid;
        for (int i = l; i <= r; ++i)
            if (q[i].id <= mid)
                temp[++t1] = q[i];
            else
                temp[++t2] = q[i];
        for (int i = l; i <= r; ++i)
            q[i] = temp[i];
        cdq(l, mid), cdq(mid+1, r);
    }
    
    int main()
    {
        scanf("%d %d", &s, &w);
        w += 2;
        int oper, cnt = 0, cnt_2 = 0;
        while (~scanf("%d", &oper) && oper != 3)
        {
            if (oper == 1)
            {
                int x, y, d;
                scanf("%d %d %d", &x, &y, &d);
                x += 2, y += 2;
                q[++cnt] = Node(1, cnt, x, y, d, 0);
            }
            else
            {
                int x1, y1, x2, y2;
                scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
                x1 += 2, y1 += 2, x2 += 2, y2 += 2;
                cnt_2 ++;
                ans[cnt_2] = s*(x2-x1+1)*(y2-y1+1);
                q[++cnt] = Node(2, cnt, x2, y2, 1, cnt_2);
                q[++cnt] = Node(2, cnt, x1-1, y2, -1, cnt_2);
                q[++cnt] = Node(2, cnt, x2, y1-1, -1, cnt_2);
                q[++cnt] = Node(2, cnt, x1-1, y1-1, 1, cnt_2);
            }
        }
        sort(q+1, q+cnt+1);
        cdq(1, cnt);
        for (int i = 1; i <= cnt_2; ++i)
            printf("%d
    ", ans[i]);
        return 0;
    }

      

    Nothing is impossible!
  • 相关阅读:
    LNMP安装后MYSQL数据库无法远程访问解决
    Ubuntu忘记root密码怎么办?
    composer安装出现proc_open没有开启问题的解决方案
    LNMP搭建环境遇到的N多坑
    lnmp HTTP ERROR 500
    LNMP集成运行(开发)环境的部署
    最新javamail 使用方案,可以异步发送邮件
    vi常用快捷键
    Dom4j解析XML文件
    Multiple markers at this line @Override的解决方法
  • 原文地址:https://www.cnblogs.com/-ZZB-/p/6403257.html
Copyright © 2020-2023  润新知