• Palindrome subsequence


                    Palindrome subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/Others)
    Total Submission(s): 2232    Accepted Submission(s): 889


    Problem Description
    In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence <A, B, D> is a subsequence of <A, B, C, D, E, F>.
    (http://en.wikipedia.org/wiki/Subsequence)

    Given a string S, your task is to find out how many different subsequence of S is palindrome. Note that for any two subsequence X = <Sx1, Sx2, ..., Sxk> and Y = <Sy1, Sy2, ..., Syk> , if there exist an integer i (1<=i<=k) such that xi != yi, the subsequence X and Y should be consider different even if Sxi = Syi. Also two subsequences with different length should be considered different.
     
    Input
    The first line contains only one integer T (T<=50), which is the number of test cases. Each test case contains a string S, the length of S is not greater than 1000 and only contains lowercase letters.
     
    Output
    For each test case, output the case number first, then output the number of different subsequence of the given string, the answer should be module 10007.
     
    Sample Input
    4
    a
    aaaaa
    goodafternooneveryone
    welcometoooxxourproblems
     
    Sample Output
    Case 1: 1
    Case 2: 31
    Case 3: 421
    Case 4: 960
     
    状态方程dp[i][j] = dp[i+1][j]+dp[i][j-1] - dp[i+1][j-1]; 如果s[i] ==s[j] , dp[i][j]还要加上dp[i+1][j-1]+1; 
    这道题WA了很惨,自己做题太少,对于有 -号再求余的一定要考虑是否有可能得出负数,加上mod之后可以保证是正数 dp[i][j] = (dp[i+1][j]+dp[i][j-1] - dp[i+1][j-1] +mod)%mod;
     
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstring>
     4 #include <cstdio>
     5 using namespace std;
     6 const int N = 1005;
     7 const int mod = 10007;
     8 int _, n, dp[N][N], cas=1;
     9 char s[N];
    10 
    11 void solve()
    12 {
    13     scanf("%s", s+1);
    14     n = strlen(s+1);
    15     memset(dp, 0, sizeof(dp));
    16     for(int k=0; k<n; k++)
    17     {
    18         for(int i=1; i+k<=n; i++)
    19         {
    20             int t = i+k;
    21             dp[i][t] = (dp[i+1][t] + dp[i][t-1] - dp[i+1][t-1] + mod) % mod;/////////注意
    22             if(s[i]==s[t]) dp[i][t] += dp[i+1][t-1] + 1;
    23             dp[i][t] %= mod;
    24         }
    25     }
    26     printf("Case %d: %d
    ", cas++, dp[1][n]);
    27 }
    28 
    29 int main()
    30 {
    31     scanf("%d", &_);
    32     while(_--) solve();
    33     return 0;
    34 }
    View Code
     
  • 相关阅读:
    通过源码安装PostgresSQL
    mysql 8.0.16 单主 mgr搭建
    美团点评SQL优化工具SQLAdvisor开源快捷部署
    通过springboot 去创建和提交一个表单(七)
    在springboot中验证表单信息(六)
    调度任务(五)
    接收上传的multi-file的文件(四)
    消费Restful的web服务(三)
    关于RabbitMQ服务器整合(二)
    在springboot中用redis实现消息队列
  • 原文地址:https://www.cnblogs.com/zyx1314/p/3843323.html
Copyright © 2020-2023  润新知