Different GCD Subarray Query
Problem Description
This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it looks, Bob cannot figure it out himself. Now he turns to you for help, and here is the problem:
Given an array a of N positive integers a1,a2,⋯aN−1,aN; a subarray of a is defined as a continuous interval between a1 and aN. In other words, ai,ai+1,⋯,aj−1,aj is a subarray of a, for 1≤i≤j≤N. For a query in the form (L,R), tell the number of different GCDs contributed by all subarrays of the interval [L,R].
Given an array a of N positive integers a1,a2,⋯aN−1,aN; a subarray of a is defined as a continuous interval between a1 and aN. In other words, ai,ai+1,⋯,aj−1,aj is a subarray of a, for 1≤i≤j≤N. For a query in the form (L,R), tell the number of different GCDs contributed by all subarrays of the interval [L,R].
Input
There are several tests, process till the end of input.
For each test, the first line consists of two integers N and Q, denoting the length of the array and the number of queries, respectively. N positive integers are listed in the second line, followed by Q lines each containing two integers L,R for a query.
You can assume that
1≤N,Q≤100000
1≤ai≤1000000
For each test, the first line consists of two integers N and Q, denoting the length of the array and the number of queries, respectively. N positive integers are listed in the second line, followed by Q lines each containing two integers L,R for a query.
You can assume that
1≤N,Q≤100000
1≤ai≤1000000
Output
For each query, output the answer in one line.
Sample Input
5 3
1 3 4 6 9
3 5
2 5
1 5
Sample Output
6
6
6
题意:
长度n的序列, m个询问区间[L, R], 问区间内的所有子段的不同GCD值有多少种.
题解:
固定右端点
预处理出 每个点向左延伸 的 不同gcd值
这样的 值不会超过log a 个
然后问题就变成了 问你一段区间内不同 gcd 值有多少,值是很少的 (询问一个区间有多少颜色的题型)
树状数组维护就可以了
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<vector> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1 #define rs ls | 1 #define mid ((ll+rr)>>1) #define pii pair<int,int> #define MP make_pair typedef long long LL; const long long INF = 1e18; const double Pi = acos(-1.0); const int N = 1e6+10, M = 1e2+11, mod = 1e9+7, inf = 2e9; int n,q,a[N],ans[N]; int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b);} vector<pii> G[N]; struct QQ{ int l,r,id; bool operator < (const QQ &a) const { return a.r > r; } }Q[N]; int C[N],vis[N]; void update(int x,int c) { for(int i =x; i < N; i+=i&(-i)) C[i] += c; } int ask(int x) { int s =0 ; for(int i = x; i; i-= i & (-i))s += C[i]; return s; } int main() { while(scanf("%d%d",&n,&q)!=EOF) { for(int i = 1; i <= n; ++i) scanf("%d",&a[i]); for(int i = 0; i <= n; ++i) G[i].clear(); for(int i = 1; i <= n; ++i) { int x = a[i]; int y = i; for(int j = 0; j < G[i-1].size(); ++j) { int res = gcd(x,G[i-1][j].first); if(x != res) { G[i].push_back(MP(x,y)); x = res; y = G[i-1][j].second; } } G[i].push_back(MP(x,y)); } memset(C,0,sizeof(C)); memset(vis,0,sizeof(vis)); for(int i = 1; i <= q; ++i) {scanf("%d%d",&Q[i].l,&Q[i].r),Q[i].id = i;} sort(Q+1,Q+q+1); for(int R = 0, i = 1; i <= q; ++i) { while(R < Q[i].r) { R++; for(int j = 0; j < G[R].size(); ++j) { int res = G[R][j].first; int ids = G[R][j].second; if(vis[res]) update(vis[res],-1); vis[res] = ids; update(vis[res],1); } } ans[Q[i].id] = ask(R) - ask(Q[i].l-1); } for(int i = 1; i <= q; ++i) cout<<ans[i]<<endl; } return 0; }