• BEEPS-仿美图秀秀磨皮算法,让美女的皮肤更光滑


    蛋疼之余,仿真了一下BEEPS算法,速度方面真不咋样,效果还勉强凑合。本算法是基于全局的磨皮算法,即一键磨皮,要做局部的也是可以的,只需增加交互功能,代码及效果图献上。

      1 % Reference:
      2 % 该算法可以用来去噪,同时还可以用来磨皮,具有较好的保护边缘细节的能力
      3 % Philippe Thevenaz et al,"Bi-Exponential Edge-Preserving Smoother".
      4 clear all;
      5 close all;
      6 [FileName,PathName]=uigetfile({'*.jpg';'*.png';'*.bmp';'*.jpeg'},'Open an Image File');
      7 img = imread([PathName FileName]);
      8 figure,imshow(img);
      9 img=double(img);
     10 Rimg=img(:,:,1);
     11 Gimg=img(:,:,2);
     12 Bimg=img(:,:,3);
     13 % 初始化参数
     14 [row,column]=size(Rimg);
     15 tempimg1=zeros(row,column);
     16 tempimg2=zeros(row,column);
     17 tempimg3=zeros(row,column);
     18 tempimg4=zeros(row,column);
     19 tempimg5=zeros(row,column);
     20 tempimg6=zeros(row,column);
     21 len=numel(Rimg(:));
     22 Psi1=zeros(1,len);
     23 Phi1=zeros(1,len);
     24 Psi2=zeros(1,len);
     25 Phi2=zeros(1,len);
     26 Psi3=zeros(1,len);
     27 Phi3=zeros(1,len);
     28 X1=zeros(1,len);
     29 X2=zeros(1,len);
     30 X3=zeros(1,len);
     31 Y1=zeros(1,len);
     32 Y2=zeros(1,len);
     33 Y3=zeros(1,len);
     34 
     35 lambda=1.05;
     36 % 注:参数sigma的值越大,图像越模糊,如果需要较大程度地磨皮,应该在保持sigma值较小的前提下,逐渐增大lambda的值
     37 % 这样才能使图像不会变得太模糊
     38 sigma=14;
     39 % 对RGB三个通道分别处理
     40 % horizon-vertical processing
     41 % 1.horizon processing
     42 for i=1:row
     43     for j=1:column
     44         
     45         X1((i-1)*column+j)=Rimg(i,j);
     46         X2((i-1)*column+j)=Gimg(i,j);
     47         X3((i-1)*column+j)=Bimg(i,j);
     48 
     49     end
     50 end
     51 Psi1(1)=X1(1);
     52 Phi1(len)=X1(len);
     53 Psi2(1)=X2(1);
     54 Phi2(len)=X2(len);
     55 Psi3(1)=X3(1);
     56 Phi3(len)=X3(len);
     57 for i=2:len
     58     Psi1(i)=(1-lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2))*Psi1(i-1);
     59     Psi2(i)=(1-lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2))*Psi2(i-1);
     60     Psi3(i)=(1-lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2))*Psi3(i-1);
     61 end
     62 for i=(len-1):-1:1
     63     Phi1(i)=(1-lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2))*Phi1(i+1);
     64     Phi2(i)=(1-lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2))*Phi2(i+1);
     65     Phi3(i)=(1-lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2))*Phi3(i+1);
     66 end
     67 for i=1:len
     68     Y1(i)=(Psi1(i)-(1-lambda)*X1(i)+Phi1(i))/(1+lambda);
     69     Y2(i)=(Psi2(i)-(1-lambda)*X2(i)+Phi2(i))/(1+lambda);
     70     Y3(i)=(Psi3(i)-(1-lambda)*X3(i)+Phi3(i))/(1+lambda);
     71 end
     72 for i=1:row
     73     for j=1:column
     74         tempimg1(i,j)=Y1((i-1)*column+j);
     75         tempimg3(i,j)=Y2((i-1)*column+j);
     76         tempimg5(i,j)=Y3((i-1)*column+j);
     77         
     78     end
     79 end
     80 
     81 % 2.vertical processing
     82 for j=1:column
     83     for i=1:row
     84         X1((j-1)*row+i)=tempimg1(i,j);
     85         X2((j-1)*row+i)=tempimg3(i,j);
     86         X3((j-1)*row+i)=tempimg5(i,j);
     87 
     88     end
     89 end
     90 Psi1(1)=X1(1);
     91 Phi1(len)=X1(len);
     92 Psi2(1)=X2(1);
     93 Phi2(len)=X2(len);
     94 Psi3(1)=X3(1);
     95 Phi3(len)=X3(len);
     96 for i=2:len
     97     Psi1(i)=(1-lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2))*Psi1(i-1);
     98     Psi2(i)=(1-lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2))*Psi2(i-1);
     99     Psi3(i)=(1-lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2))*Psi3(i-1);
    100 end
    101 for i=(len-1):-1:1
    102     Phi1(i)=(1-lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2))*Phi1(i+1);
    103     Phi2(i)=(1-lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2))*Phi2(i+1);
    104     Phi3(i)=(1-lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2))*Phi3(i+1);
    105 end
    106 for i=1:len
    107     Y1(i)=(Psi1(i)-(1-lambda)*X1(i)+Phi1(i))/(1+lambda);
    108     Y2(i)=(Psi2(i)-(1-lambda)*X2(i)+Phi2(i))/(1+lambda);
    109     Y3(i)=(Psi3(i)-(1-lambda)*X3(i)+Phi3(i))/(1+lambda);
    110 end
    111 for j=1:column
    112     for i=1:row
    113         tempimg1(i,j)=Y1((j-1)*row+i);
    114         tempimg3(i,j)=Y2((j-1)*row+i);
    115         tempimg5(i,j)=Y3((j-1)*row+i);
    116 
    117     end
    118 end
    119 
    120 % vertical-horizon
    121 % 1.vertical processing
    122 for j=1:column
    123     for i=1:row
    124         X1((j-1)*row+i)=Rimg(i,j);
    125         X2((j-1)*row+i)=Gimg(i,j);
    126         X3((j-1)*row+i)=Bimg(i,j);
    127     end
    128 end
    129 Psi1(1)=X1(1);
    130 Phi1(len)=X1(len);
    131 Psi2(1)=X2(1);
    132 Phi2(len)=X2(len);
    133 Psi3(1)=X3(1);
    134 Phi3(len)=X3(len);
    135 for i=2:len
    136     Psi1(i)=(1-lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2))*Psi1(i-1);
    137     Psi2(i)=(1-lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2))*Psi2(i-1);
    138     Psi3(i)=(1-lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2))*Psi3(i-1);
    139 end
    140 for i=(len-1):-1:1
    141     Phi1(i)=(1-lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2))*Phi1(i+1);
    142     Phi2(i)=(1-lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2))*Phi2(i+1);
    143     Phi3(i)=(1-lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2))*Phi3(i+1);
    144 end
    145 for i=1:len
    146     Y1(i)=(Psi1(i)-(1-lambda)*X1(i)+Phi1(i))/(1+lambda);
    147     Y2(i)=(Psi2(i)-(1-lambda)*X2(i)+Phi2(i))/(1+lambda);
    148     Y3(i)=(Psi3(i)-(1-lambda)*X3(i)+Phi3(i))/(1+lambda);
    149 end
    150 for j=1:column
    151     for i=1:row
    152         tempimg2(i,j)=Y1((j-1)*row+i);
    153         tempimg4(i,j)=Y2((j-1)*row+i);
    154         tempimg6(i,j)=Y3((j-1)*row+i);
    155 
    156     end
    157 end 
    158 % 2.horizon processing
    159 for i=1:row
    160     for j=1:column
    161         X1((i-1)*column+j)=tempimg2(i,j);
    162         X2((i-1)*column+j)=tempimg4(i,j);
    163         X3((i-1)*column+j)=tempimg6(i,j);
    164 
    165     end
    166 end
    167 Psi1(1)=X1(1);
    168 Phi1(len)=X1(len);
    169 Psi2(1)=X2(1);
    170 Phi2(len)=X2(len);
    171 Psi3(1)=X3(1);
    172 Phi3(len)=X3(len);
    173 for i=2:len
    174     Psi1(i)=(1-lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Psi1(i-1))^2)/(2*sigma^2))*Psi1(i-1);
    175     Psi2(i)=(1-lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Psi2(i-1))^2)/(2*sigma^2))*Psi2(i-1);
    176     Psi3(i)=(1-lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Psi3(i-1))^2)/(2*sigma^2))*Psi3(i-1);
    177 end
    178 for i=(len-1):-1:1
    179     Phi1(i)=(1-lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2)))*X1(i)+lambda*exp((-(X1(i)-Phi1(i+1))^2)/(2*sigma^2))*Phi1(i+1);
    180     Phi2(i)=(1-lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2)))*X2(i)+lambda*exp((-(X2(i)-Phi2(i+1))^2)/(2*sigma^2))*Phi2(i+1);
    181     Phi3(i)=(1-lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2)))*X3(i)+lambda*exp((-(X3(i)-Phi3(i+1))^2)/(2*sigma^2))*Phi3(i+1);
    182 end
    183 for i=1:len
    184     Y1(i)=(Psi1(i)-(1-lambda)*X1(i)+Phi1(i))/(1+lambda);
    185     Y2(i)=(Psi2(i)-(1-lambda)*X2(i)+Phi2(i))/(1+lambda);
    186     Y3(i)=(Psi3(i)-(1-lambda)*X3(i)+Phi3(i))/(1+lambda);
    187 end
    188 for i=1:row
    189     for j=1:column
    190         tempimg2(i,j)=Y1((i-1)*column+j);
    191         tempimg4(i,j)=Y2((i-1)*column+j);
    192         tempimg6(i,j)=Y3((i-1)*column+j);
    193         
    194     end
    195 end
    196 
    197 tempimg7=(tempimg1+tempimg2)/2;
    198 tempimg8=(tempimg3+tempimg4)/2;
    199 tempimg9=(tempimg5+tempimg6)/2;
    200 
    201 img(:,:,1)=tempimg7;
    202 img(:,:,2)=tempimg8;
    203 img(:,:,3)=tempimg9;
    204 figure,imshow(uint8(img));

  • 相关阅读:
    .NET题目(收集来自网络)
    c#反射
    c#泛型
    asp.net core 下载文件,上传excel文件
    remote: HTTP Basic: Access denied fatal: Authentication failed for'https'
    获取jwt(json web token)中存储的用户信息
    System.data.sqlclient.sqlexception:将截断字符串或二进制数据终止
    代码热更新
    左手坐标系 vs 右手坐标系
    GPU相关临时笔记
  • 原文地址:https://www.cnblogs.com/2014-august/p/4333955.html
Copyright © 2020-2023  润新知