• Sphinx+MySQL5.1x+SphinxSE+mmseg中文分词


    Sphinx+MySQL5.1x+SphinxSE+mmseg中文分词

    搜索引擎架构搭建

     什么是Sphinx

    Sphinx 是一个在GPLv2 下发布的一个全文检索引擎,一般而言,Sphinx是一个独立的搜索引擎,意图为其他应用提供高速、低空间占用、高结果相关度的全文搜索功能。Sphinx可以非常容易的与SQL数据库和脚本语言集成。当前系统内置MySQL和PostgreSQL 数据库数据源的支持,也支持从标准输入读取特定格式的XML数据。通过修改源代码,用户可以自行增加新的数据源(例如:其他类型的DBMS的原生支持)。

    Sphinx的特性

     高速的建立索引(在当代CPU上,峰值性能可达到10 MB/秒);

     高性能的搜索(在2 – 4GB 的文本数据上,平均每次检索响应时间小于0.1秒);

     可处理海量数据(目前已知可以处理超过100 GB的文本数据, 在单一CPU的系统上可处理100 M 文档);

     提供了优秀的相关度算法,基于短语相似度和统计(BM25)的复合Ranking方法; 支持分布式搜索;

     provides document exceprts generation;

     可作为MySQL的存储引擎提供搜索服务;

     支持布尔、短语、词语相似度等多种检索模式;

     文档支持多个全文检索字段(最大不超过32个);

     文档支持多个额外的属性信息(例如:分组信息,时间戳等);

     停止词查询;

     支持单一字节编码和UTF-8编码;

     原生的MySQL支持(同时支持MyISAM 和InnoDB );

           原生的PostgreSQL 支持.

    更多特性参考手册。

    原生MySQL存储引擎检索流程:

    基于Sphinx存储引擎检索:

    开始

    本文以CentOS5.5+mysql-5.1.55+sphinx-0.9.9(coreseek-3.2.14.tar.gz目前最新稳定版)为例介绍

    安装前准备文件

    Sphinx+MySQL5.1x+SphinxSE存储引擎+mmseg中文分词搜索引擎架构搭建过程。

    通过yum命令更新依赖包(与php环境搭建依赖包一起更新了)

    yum -y install gcc g++ gcc-c++ libjpeg libjpeg-devel libpng libpng-devel freetype freetype-devel libxml2 libxml2-devel zlib zlib-devel glibc glibc-devel glib2 glib2-devel bzip2 bzip2-devel ncurses ncurses-devel curl curl-devel e2fsprogs e2fsprogs-devel krb5 krb5-devel libidn libidn-devel openssl openssl-devel openldap openldap-devel nss_ldap openldap-clients openldap-servers patch libtool automake imake mysql-devel expat-devel

    安装MySQL+SphinxSE,进入软件包目录

    tar zxvf mysql-5.1.55.tar.gz

    tar zxvf sphinx-0.9.9.tar.gz

    cp -r sphinx-0.9.9/mysqlse/ mysql-5.1.55/storage/sphinx

    cd mysql-5.1.55

    ./BUILD/autorun.sh

    ./configure --prefix=/usr/local/webserver/mysql/ --enable-assembler --with-extra-charsets=complex --enable-thread-safe-client --with-big-tables --with-readline --with-ssl --with-embedded-server --enable-local-infile --with-plugins=partition,innobase,myisammrg,sphinx

    make

    make install

    。。。省略若干配置步骤,和平时配置MySQL没什么两样。

    安装完成启动MySQL后查看sphinx存储引擎是否安装成功

    在mysql命令行下执行

    show engines;

    如果出现如下图红色方框内的信息说明SphinxSE已经安装成功!

    安装Sphinx全文检索服务器

    Sphinx默认不支持中文索引及检索, 以前用Coreseek的补丁来解决,目前Coreseek 不单独提供补丁文件,而基于sphinx开发了Coreseek 全文检索服务器,Coreseek应该是现在用的最多的sphinx中文全文检索,它提供了为Sphinx设计的中文分词包LibMMSeg包含mmseg中文分词,其实coreseek-3.2.14.tar.gz中已经包含了sphinx,前面安装SphinxSE时也可以使用这个压缩包里的mysqlse。

    我们来看一下的安装过程:

    安装autoconf

    tar zxvf autoconf-2.64.tar.gz

    cd autoconf-2.64

    ./configure --prefix=/usr

    make

    make install

    cd ..

    安装Coreseek

    tar zxvf coreseek-3.2.14.tar.gz

    cd coreseek-3.2.14

    cd mmseg-3.2.14/

    ./bootstrap

    ./configure --prefix=/usr/local/mmseg3

    make

    make install

    cd ../csft-3.2.14/

    sh buildconf.sh

    ./configure --prefix=/usr/local/coreseek --without-python --without-unixodbc --with-mmseg --with-mmseg-includes=/usr/local/mmseg3/include/mmseg/ --with-mmseg-libs=/usr/local/mmseg3/lib/ --with-mysql --host=arm

    make

    make install

    cd /usr/local/coreseek/etc

    进入配置目录通过命令ls可以看到3个文件

    example.sql  sphinx.conf.dist  sphinx-min.conf.dist

    其中example.sql是示例sql脚本我们将其导入到数据库中的test数据库中作为测试数据(会创建两张表 documents和tags)

    vi sphinx.conf

    输入以下内容

    source src1

    {

         type                   = mysql

         sql_host               = localhost

         sql_user               = root

         sql_pass               =12345678

         sql_db                 = test

         sql_port               = 3306   # optional, default is 3306

         sql_sock                              = /tmp/mysql.sock

         sql_query_pre = SET NAMES utf8

         sql_query              = \

             SELECT id, group_id, UNIX_TIMESTAMP(date_added) AS date_added, title, content \

             FROM documents

         sql_attr_uint          = group_id

         sql_attr_timestamp     = date_added

         sql_query_info              = SELECT * FROM documents WHERE id=$id

    }

    index test1

    {

         source                      = src1

         path                   = /usr/local/coreseek/var/data/test1

         docinfo                     = extern

         charset_type           = zh_cn.utf-8

         mlock              = 0

         morphology         = none

         min_word_len       = 1

         html_strip         = 0

         charset_dictpath       = /usr/local/mmseg3/etc/

         ngram_len                    = 0

    }

    indexer

    {

         mem_limit              = 32M

    }

     

     

    searchd

    {

         port                   = 9312

         log                         = /usr/local/coreseek/var/log/searchd.log

         query_log              = /usr/local/coreseek/var/log/query.log

         read_timeout           = 5

         max_children           = 30

         pid_file               = /usr/local/coreseek/var/log/searchd.pid

         max_matches                 = 1000

         seamless_rotate             = 1

         preopen_indexes             = 0

         unlink_old                  = 1

    }

     

    说明:

    代码段source src1{***} 代表数据源里面主要包含了数据库的配置信息,src1表示数据源名字,可以随便写。

    代码段index test1{***} 代表为哪个数据源创建索引,与source *** 是成对出现的,其中的source参数的值必须是某一个数据源的名字。

    其他参数可以查看手册,这里不再赘述。

    生成索引

    /usr/local/coreseek/bin/indexer -c /usr/local/coreseek/etc/sphinx.conf --all

    其中参数--all表示生成所有索引

    当然也可以是索引的名字例如:/usr/local/coreseek/bin/indexer -c /usr/local/coreseek/etc/sphinx.conf test1

    执行后可以在/usr/local/coreseek/var/data目录中看到多出一些文件,是以索引名为文件名的不同的扩展名的文件

    在不启动sphinx的情况下即可测试命令:

      /usr/local/coreseek/bin/search -c /usr/local/coreseek/etc/sphinx.conf number

    可以看到将内容中含有number数据的数据查询出来。

    过滤查询

    /usr/local/coreseek/bin/search -c /usr/local/coreseek/etc/sphinx.conf number --filter group_id 2

    限定group_id 为2 返回一条记录

    同样也可以测试中文(需将命令行终端编码调整为utf-8)

    /usr/local/coreseek/bin/search -c /usr/local/coreseek/etc/sphinx.conf 研究生创业

    可以看到我们输入的查询文字已经被拆分成了两个词,只是因为我们的测试数据中没有中文数据查询结果为空。我们插入几条新数据。

    set names utf8  之前一定要设置字符集

    INSERT INTO `test`.`documents` (

    `id` ,

    `group_id` ,

    `group_id2` ,

    `date_added` ,

    `title` ,

    `content`

    )

    VALUES (

    NULL , '2', '3', '2011-02-01 00:37:12', '研究生的故事', '研究生自主创业'

    ), (

    NULL , '1', '1', '2011-01-28 00:38:22', '研究', '为了创业而研究生命科学'

    );

    我们再来看以下数据库中的主要数据

    插入新数据后需要重新生成索引

    /usr/local/coreseek/bin/indexer -c /usr/local/coreseek/etc/sphinx.conf test1

    然后执行查询测试 /usr/local/coreseek/bin/search -c /usr/local/coreseek/etc/sphinx.conf 研究生创业

    我们搜索的词语是“研究生创业”,可以看到词语被拆分成了研究生和创业两个词,虽然有两条记录都包含“创业和”研究生”这几个字但是“研究生命科学”中的“研究生”三个字虽然是紧挨着的但是不是一个词语,结果是只匹配一条“研究生自主创业”,我们在搜索“研究”这个词语

    /usr/local/coreseek/bin/search -c /usr/local/coreseek/etc/sphinx.conf 研究

    同样匹配一条记录,而“研究生的故事”和“研究生自主创业”的词语却没有被查询出来,可以看出sphinx与分词技术结合可以匹配出相关度更高的结果。

    当然我们的目的不仅限与命令行下的测试,我们可以通过搜索API调用来执行搜索,搜索API支持PHP、Python、Perl、Rudy和Java。如果从PHP脚本检索需要先启动守护进程searchd,PHP脚本需要连接到searchd上进行检索:

    /usr/local/coreseek/bin/searchd -c /usr/local/coreseek/etc/sphinx.conf

    在解压后的sphinx-0.9.9/api目录下的sphinxapi.php就是sphinx官方为我们提供的API文件(其实也可以使用PHP的sphinx扩展),只需将其包含进自己的PHP脚本文件就可以了。

    示例代码:

    <?php

    include('sphinxapi.php');

      $cl = new SphinxClient();

      //设置sphinx服务器地址与端口,如果是本机则可以为localhost

      $cl->SetServer( "192.168.16.6", 9312 );

      //以下设置用于返回数组形式的结果

     $cl->SetArrayResult ( true );

     //$cl->SetMatchMode( SPH_MATCH_ANY  );//匹配模式

     //$cl->SetFilter( 'group_id', array( 2 ) );

      $result = $cl->Query( '研究生创业', 'test1' );  //参数 关键字  索引名

      if ( $result === false ) {

          echo "Query failed: " . $cl->GetLastError() . ".\n";

      }

      else {

          if ( $cl->GetLastWarning() ) {

              echo "WARNING: " . $cl->GetLastWarning() . "";

          }

      

              echo '<pre>';

              print_r( $result );

      }

     ?>

    执行后的结果:

    Array

    (

        [error] =>

        [warning] =>

        [status] => 0

        [fields] => Array

            (

                [0] => title

                [1] => content

            )

        [attrs] => Array

            (

                [group_id] => 1

                [date_added] => 2

            )

        [matches] => Array

            (

                [5] => Array

                    (

                        [weight] => 2

                        [attrs] => Array

                            (

                                [group_id] => 2

                                [date_added] => 1296491832

                            )

                    )

            )

        [total] => 1

        [total_found] => 1

        [time] => 0.078

        [words] => Array

            (

                [研究生] => Array

                    (

                        [docs] => 1

                        [hits] => 2

                    )

                [创业] => Array

                    (

                        [docs] => 2

                        [hits] => 2

                    )

            )

    )

    在matches中的就是查询结果,我们注意到sphinx是将记录中的主键ID值返回而不是返回所有数据,上面的例子中的键名5就是记录的ID(如果在查询前执行$cl->SetArrayResult ( true );则数组结构会有些许差异)。至此搜索服务器已经为我们完成了大部分工作,接下来我们通过主键ID值来查询我们想要的数据就可以了。

    Sphinx存储引擎的使用

    SphinxSE是一个可以编译进MySQL 5.x版本的MySQL存储引擎,它利用了该版本MySQL的插件式体系结构。尽管被称作“存储引擎”,SphinxSE自身其实并不存储任何数据。它其实是一个允许MySQL服务器与searchd交互并获取搜索结果的嵌入式客户端。所有的索引和搜索都发生在MySQL之外。

    SphinxSE的适用于:

     使将MySQL FTS 应用程序移植到Sphinx

     使没有Sphinx API的那些语言也可以使用Sphinx

     当需要在MySQL端对Sphinx结果集做额外处理(例如对原始文档表做JOIN,MySQL端的额外过滤等等)时提供优化。

    要通过SphinxSE搜索,需要建立特殊的ENGINE=SPHINX的“搜索表”,然后使用SELECT语句从中检索,把全文查询放在WHERE子句中。

    创建一张表t1

    CREATE TABLE t1

    (

        id          INTEGER UNSIGNED NOT NULL,

        weight      INTEGER NOT NULL,

        query       VARCHAR(3072) NOT NULL,

        group_id    INTEGER,

        INDEX(query)

    ) ENGINE=SPHINX CONNECTION="sphinx://localhost:9312/test1";

    搜索表前三列的类型必须是INTEGER,INTEGER和VARCHAR,这三列分别对应文档ID,匹配权值和搜索查询。查询列必须被索引,其他列必须无索引。列的名字会被忽略,所以可以任意命名,参数CONNECTION来指定用这个表搜索时的默认搜索主机、端口号和索引,语法格式:CONNECTION="sphinx://HOST:PORT/INDEXNAME"。

    执行SQL语句 select d.id,d.title,d.content from t1 join documents as d on t1.id = d.id and t1.query = '研究生创业';

    +----+--------------------+-----------------------+

    | id | title              | content               |

    +----+--------------------+-----------------------+

    |  5 | 研究生的故事 | 研究生自主创业 |

    +----+--------------------+-----------------------+

    1 row in set (0.04 sec)

    结果返回了我们想要的数据,可见利用SphinxSE可以仅仅在SQL语句上做很小的改动即可很方便的实现全文检索!

  • 相关阅读:
    Supermap/Cesium 开发心得----获取三维视角的四至范围
    Supermap/Cesium 开发心得----定位
    GIS面试小知识点
    Oracle数据库小知识点整理
    利用 uDig 生成 GeoServer 可用的 SLD 渲染文件
    Geoserver设置style
    图片按宽高比1:1响应,窗口大小如何变化,图片宽高始终相等
    简单树
    递归渲染树
    div等高布局
  • 原文地址:https://www.cnblogs.com/zox2011/p/2362618.html
Copyright © 2020-2023  润新知