• 《Cracking the Coding Interview》——第18章:难题——题目11


    2014-04-29 04:30

    题目:给定一个由‘0’或者‘1’构成的二维数组,找出一个四条边全部由‘1’构成的正方形(矩形中间可以有‘0’),使得矩形面积最大。

    解法:用动态规划思想,记录二维数组每个元素向上下左右四个方向各有多少个连续的‘1’,然后用O(n^3)时间计算出满足条件的最大正方形。时间复杂度O(n^3),空间复杂度O(n^2)。

    代码:

      1 // 18.11 Given an NxN matrix of 0s and 1s, find out a subsquare whose all four borders are all 1s. If multiple satisfies the condition, any one is OK.
      2 // I'll return the size and the left top corner of the subsquare.
      3 #include <iostream>
      4 #include <vector>
      5 using namespace std;
      6 
      7 class Solution {
      8 public:
      9     void maxSubsquare(const vector<vector<int> > &matrix, int &max_left, int &max_top, int &max_size) {
     10         int n = matrix.size();
     11         
     12         max_left = max_top = max_size = -1;
     13         
     14         if (n <= 1) {
     15             return;
     16         }
     17         
     18         vector<vector<int> > top   (n, vector<int>(n));
     19         vector<vector<int> > bottom(n, vector<int>(n));
     20         vector<vector<int> > left  (n, vector<int>(n));
     21         vector<vector<int> > right (n, vector<int>(n));
     22         
     23         int i, j;
     24         int tmp;
     25         
     26         // use DP to preprocess the data, count how many consecutive 1s are there to the left, right, top, bottom of matrix[i][j].
     27         for (i = 0; i <= n - 1; ++i) {
     28             tmp = 0;
     29             for (j = 0; j <= n - 1; ++j) {
     30                 left[i][j] = matrix[i][j] ? (++tmp) : (tmp = 0);
     31             }
     32         }
     33         for (j = 0; j <= n - 1; ++j) {
     34             tmp = 0;
     35             for (i = 0; i <= n - 1; ++i) {
     36                 top[i][j] = matrix[i][j] ? (++tmp) : (tmp = 0);
     37             }
     38         }
     39         for (i = n - 1; i >= 0; --i) {
     40             tmp = 0;
     41             for (j = n - 1; j >= 0; --j) {
     42                 right[i][j] = matrix[i][j] ? (++tmp) : (tmp = 0);
     43             }
     44         }
     45         for (j = n - 1; j >= 0; --j) {
     46             tmp = 0;
     47             for (i = n - 1; i >= 0; --i) {
     48                 bottom[i][j] = matrix[i][j] ? (++tmp) : (tmp = 0);
     49             }
     50         }
     51         
     52         int len;
     53         // O(n ^ 3) solution with O(n ^ 2) space usage.
     54         for (i = 0; i < n; ++i) {
     55             for (j = 0; j < n; ++j) {
     56                 for (len = 2; len + i <= n && len + j <= n; ++len) {
     57                     if (right[i][j] < len || bottom[i][j] < len) {
     58                         continue;
     59                     }
     60                     if (left[i][j + len - 1] < len || bottom[i][j + len - 1] < len) {
     61                         continue;
     62                     }
     63                     if (right[i + len - 1][j] < len || top[i + len - 1][j] < len) {
     64                         continue;
     65                     }
     66                     if (left[i + len - 1][j + len - 1] < len || top[i + len - 1][j + len - 1] < len) {
     67                         continue;
     68                     }
     69                     // all four borders are '1's.
     70                     if (len > max_size) {
     71                         max_top = i;
     72                         max_left = j;
     73                         max_size = len;
     74                     }
     75                 }
     76             }
     77         }
     78         
     79         // clear up data
     80         for (i = 0; i < n; ++i) {
     81             left[i].clear();
     82             right[i].clear();
     83             top[i].clear();
     84             bottom[i].clear();
     85         }
     86         left.clear();
     87         right.clear();
     88         top.clear();
     89         bottom.clear();
     90     };
     91 };
     92 
     93 int main()
     94 {
     95     int n;
     96     int i, j;
     97     vector<vector<int> > matrix;
     98     Solution sol;
     99     int max_left, max_top, max_size;
    100     
    101     while (cin >> n && n > 0) {
    102         matrix.resize(n);
    103         for (i = 0; i < n; ++i) {
    104             matrix[i].resize(n);
    105         }
    106         
    107         for (i = 0; i < n; ++i) {
    108             for (j = 0; j < n; ++j) {
    109                 cin >> matrix[i][j];
    110             }
    111         }
    112         
    113         sol.maxSubsquare(matrix, max_left, max_top, max_size);
    114         if (max_size > 0) {
    115             cout << max_top << ' ' << max_left << endl;
    116             cout << max_top << ' ' << max_left + max_size - 1 << endl;
    117             cout << max_top + max_size - 1 << ' ' << max_left << endl;
    118             cout << max_top + max_size - 1 << ' ' << max_left + max_size - 1 << endl;
    119         } else {
    120             cout << "No subsquare found." << endl;
    121         }
    122         
    123         for (i = 0; i < n; ++i) {
    124             matrix[i].clear();
    125         }
    126         matrix.clear();
    127     }
    128     
    129     return 0;
    130 }
  • 相关阅读:
    animate()的使用
    jQuery UI中datepicker()的使用
    newsletter 在不同邮箱中发送的问题
    用户评价 打星等级 效果 jQuery
    SpringBoot整合WebSocket
    SpringBoot之自定义拦截器
    SpringBoot整合MyBatis
    EF实体框架简单原理及基本增删改查用法(上)
    数据库内容导出到Excel
    Asp.Net页面生命周期
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3698379.html
Copyright © 2020-2023  润新知