题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1392
题意:有n棵树,每棵树有一个坐标,想用一些绳子把这些树包含起来,求需要绳子的长度;
就是求凸包的周长的,把凸包各边的长度加起来就好了;注意n<=2的情况,运用GraHam算法,时间复杂度是O(nlogn);
GraHam算法的过程:
#include <stdio.h> #include <algorithm> #include <cstring> #include <cmath> using namespace std; #define met(a, b) memset(a, b, sizeof(a)) const double eps = 1e-10; const double PI = acos(-1); const int N = 150010; struct point { double x, y; point(double x=0, double y=0) : x(x), y(y){} friend point operator - (const point& p1, const point& p2) { return point(p1.x-p2.x, p1.y-p2.y); } friend double operator ^ (const point& p1, const point& p2) { return p1.x*p2.y - p1.y*p2.x; } }p[N], res[N]; double Dist(point p1, point p2) { double dx = p1.x - p2.x, dy = p1.y - p2.y; return sqrt(dx*dx + dy*dy); } bool cmp1(point p1, point p2) { if(p1.y == p2.y) return p1.x < p2.x; return p1.y < p2.y; } bool cmp2(point p1, point p2)///极角排序;若极角相同,距离近的在前面; { double k = (p1-p[0])^(p2-p[0]); if( k>eps || (fabs(k)<eps && Dist(p1, p[0]) < Dist(p2, p[0]) )) return 1; return 0; } int Graham(int n)///返回凸包的点的个数; { res[0] = p[0];if(n == 1) return 1; res[1] = p[1];if(n == 2) return 2; int top = 1; for(int i=2; i<n; i++) { while(top && ((res[top]-res[top-1])^(p[i]-res[top-1])) <= 0) top--; res[++top] = p[i]; } return top+1; } int main() { int n; while(scanf("%d", &n), n) { for(int i=0; i<n; i++) scanf("%lf %lf", &p[i].x, &p[i].y); if(n == 0 || n == 1) { printf("0 "); continue; } if(n == 2) { printf("%.2f ", Dist(p[1], p[0])); continue; } sort(p, p+n, cmp1);///p[0]为最下方靠左的点; sort(p+1, p+n, cmp2);///以p[0]为基点,按叉积进行排序; int cnt = Graham(n);///求凸包的顶点个数cnt+1,保存在res中,下标从0开始; double ans = Dist(res[0], res[cnt-1]); for(int i=1; i<cnt; i++) ans += Dist(res[i], res[i-1]); printf("%.2f ", ans); } return 0; }