• POJ1651Multiplication Puzzle(矩阵链乘变形)


    Multiplication Puzzle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8040   Accepted: 4979

    Description

    The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.

    The goal is to take cards in such order as to minimize the total number of scored points.

    For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
    10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

    If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
    1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

    Input

    The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

    Output

    Output must contain a single integer - the minimal score.

    Sample Input

    6
    10 1 50 50 20 5
    

    Sample Output

    3650

    http://www.cnblogs.com/hoodlum1980/archive/2012/06/07/2540150.html
    浙大童鞋的结题报告,看了人家的,越发自己就是一纯渣比
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <cstring>
     5 using namespace std;
     6 const int Max = 100 + 5;
     7 const int INF = 0x3f3f3f3f;
     8 int dp[Max][Max],card[Max];
     9 int n;
    10 void Input()
    11 {
    12     for(int i = 1; i <= n; i++)
    13         scanf("%d", &card[i]);
    14 }
    15 int solve()
    16 {
    17     memset(dp, 0, sizeof(dp));
    18     for(int p = 2; p < n; p++)
    19     {
    20         for(int i = 1; i < n; i++)
    21         {
    22             int j = i + p;
    23             if(j > n)
    24                 break;
    25             dp[i][j] = INF;
    26             for(int k = i + 1; k < j; k++)
    27             {
    28                 dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + card[i] * card[k] * card[j]);
    29             }
    30         }
    31     }
    32     return 0;
    33 }
    34 int main()
    35 {
    36     while(scanf("%d", &n) != EOF)
    37     {
    38         Input();
    39         solve();
    40         printf("%d
    ", dp[1][n]);
    41     }
    42     return 0;
    43 }
    View Code
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <cstring>
     5 using namespace std;
     6 const int Max = 100 + 5;
     7 const int INF = 0x3f3f3f3f;
     8 int dp[Max][Max],card[Max],trace[Max][Max]; //记录选择方案
     9 int n;
    10 void Input()
    11 {
    12     for(int i = 1; i <= n; i++)
    13         scanf("%d", &card[i]);
    14 }
    15 int solve()
    16 {
    17     memset(dp, 0, sizeof(dp));
    18     memset(trace, 0, sizeof(trace));
    19     for(int p = 2; p < n; p++)
    20     {
    21         for(int i = 1; i < n; i++)
    22         {
    23             int j = i + p;
    24             if(j > n)
    25                 break;
    26             dp[i][j] = INF;
    27             for(int k = i + 1; k < j; k++)
    28             {
    29                 if(dp[i][j] > dp[i][k] + dp[k][j] + card[i] * card[k] * card[j])
    30                 {
    31                     dp[i][j] =  dp[i][k] + dp[k][j] + card[i] * card[k] * card[j];
    32                     trace[i][j] = k;
    33                 }
    34             }
    35         }
    36     }
    37     return 0;
    38 }
    39 void print(int Begin, int End)
    40 {
    41     if(End - Begin <= 1)
    42         return ;
    43     printf("%d ", trace[Begin][End]);  //结果是逆序的
    44     print(Begin, trace[Begin][End]);
    45     print(trace[Begin][End], End);
    46 }
    47 int main()
    48 {
    49     while(scanf("%d", &n) != EOF)
    50     {
    51         Input();
    52         solve();
    53         printf("%d
    ", dp[1][n]);
    54         print(1,n);
    55     }
    56     return 0;
    57 }
    输出选择方案

  • 相关阅读:
    javascript 解析json数据
    解析 对象列表的JSON数据 []、[{}] 中括号
    # 指针
    # 栈内存和堆内存
    # Linux学习笔记
    # jsp及servlet学习笔记
    # Git学习笔记
    # Excel批量处理数据
    # 数学建模算法
    # VsCode 配置C++调试运行
  • 原文地址:https://www.cnblogs.com/zhaopAC/p/5183952.html
Copyright © 2020-2023  润新知