• PAT A1126 Eulerian Path (25 分)——连通图,入度


    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

    Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

    Output Specification:

    For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

    Sample Input 1:

    7 12
    5 7
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    7 6
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 1:

    2 4 4 4 4 4 2
    Eulerian
    

    Sample Input 2:

    6 10
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 2:

    2 4 4 4 3 3
    Semi-Eulerian
    

    Sample Input 3:

    5 8
    1 2
    2 5
    5 4
    4 1
    1 3
    3 2
    3 4
    5 3
    

    Sample Output 3:

    3 3 4 3 3
    Non-Eulerian
    
     
     1 #include <stdio.h>
     2 #include <algorithm>
     3 using namespace std;
     4 const int maxn=510;
     5 int g[maxn][maxn];
     6 int deg[maxn];
     7 int n,m;
     8 int num=0;
     9 bool vis[maxn]={false};
    10 void dfs(int st){
    11     if(vis[st]==false){
    12         vis[st]=true;
    13         num++;
    14         for(int i=1;i<=n;i++){
    15             if(vis[i]==false && g[st][i]==1){
    16                 dfs(i);
    17             }
    18         }
    19     }
    20 }
    21 int main(){
    22     scanf("%d %d",&n,&m);
    23     for(int i=0;i<m;i++){
    24         int c1,c2;
    25         scanf("%d %d",&c1,&c2);
    26         g[c1][c2]=g[c2][c1]=1;
    27         deg[c1]++;
    28         deg[c2]++;
    29     }
    30     dfs(1);
    31     int cnt=0;
    32     for(int i=1;i<=n;i++){
    33         printf("%d",deg[i]);
    34         printf("%s",i==n?"
    ":" ");
    35         if(deg[i]%2==1)cnt++;
    36     }
    37     //printf("%d %d
    ",num,cnt);
    38     if(num==n && cnt==0){
    39         printf("Eulerian
    ");
    40     }
    41     else if(num==n && cnt==2){
    42         printf("Semi-Eulerian
    ");
    43     }
    44     else{
    45         printf("Non-Eulerian
    ");
    46     }
    47 }
    View Code

    注意点:直接根据题目字面意思实现就好了。首先看是不是连通图,再看入度为奇数的有几个,没有就是Eulerian,有2个就是semi,其余为non

    ---------------- 坚持每天学习一点点
  • 相关阅读:
    环境配置 | 安装Jupyter Notebook及jupyter_contrib_nbextensions库实现代码自动补全
    环境配置 | mac环境变量文件.bash_profile相关
    Django | 解决“(1146, "Table 'mydb.django_session' doesn't exist")”报错的方法
    Django | pycharm 提示 unresolved attribute referene 'objects' for class 'xxxx'
    站点中添加企业qq的几种方式
    div自适应高度
    SVN服务器搭建和使用(三)
    SVN服务器搭建和使用(二)
    SVN服务器搭建和使用(一)
    宽度为100%,缩小窗口,右侧的区域背景图片变成空白
  • 原文地址:https://www.cnblogs.com/tccbj/p/10431474.html
Copyright © 2020-2023  润新知