[296] Allen, Mark; Caffarelli, Luis; Vasseur, Alexis. Porous medium flow with both a fractional potential pressure and fractional time derivative. Chin. Ann. Math. Ser. B 38 (2017), no. 1, 45--82.
[295] Caffarelli, Luis; Dipierro, Serena; Valdinoci, Enrico. A logistic equation with nonlocal interactions. Kinet. Relat. Models 10 (2017), no. 1, 141--170.
[294] Caffarelli, Luis;
Vázquez, Juan Luis. Regularity of solutions of the fractional porous medium
flow with exponent ½. St. Petersburg Math. J. 27 (2016), 437--460.
[293] Arapostathis, Ari; Biswas, Anup; Caffarelli, Luis. The
Dirichlet problem for stable-like operators and related probabilistic
representations. Comm. Partial Differential Equations. 41 (2016),
no. 9, 1472--1511.
[292] Caffarelli, L.; De Silva, D.; Savin, O.
Obstacle-type problems for minimal surfaces. Comm. Partial Differential
Equations 41 (2016), no. 8, 1303--1323.
[291] Caffarelli,
Luis A.; Kriventsov, Dennis. A free boundary problem related to thermal
insulation. Comm. Partial Differential Equations 41 (2016), no. 7,
1149--1182.
[290] Caffarelli, Luis; Silvestre, Luis. A nonlocal
Monge-Ampère equation. Comm. Anal. Geom. 24 (2016), no. 2,
307--335.
[289] Caffarelli, Luis; Stinga, Pablo Raúl Fractional
elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H.
Poincaré Anal. Non Linéaire 33 (2015), no. 3, 767--807.
[288]
Allen, Mark; Caffarelli, Luis; Vasseur, Alexis. A Parabolic Problem with
a Fractional-Time Derivative. Arch. Ration. Mech. Anal. 221
(2016), no. 2, 603--630.
[287] Bonforte, Matteo; Caffarelli, Luis;
Grillo, Gabriele. Foreword. Nonlinear Anal. 137/138 (2016),
1--2.
[286] Caffarelli, Luis; Charro, Fernando. On a fractional
Monge-Ampère operator. Annals of PDE 1 (2015), no. 1, 1--47.
[285] Caffarelli, Luis A.; Wang, Peiyong. A bifurcation
phenomenon in a singularly perturbed one-phase free boundary problem of phase
transition. Calc. Var. Partial Differential Equations 54 (2015),
no. 4, 3517--3529.
[284] Caffarelli, Luis A.; Shahgholian,
Henrik. Regularity of free boundaries a heuristic retro. Philos. Trans. A
373 (2015), no. 2050, 20150209, 18 pp.
[283] Caffarelli,
Luis; Savin, Ovidiu; Valdinoci, Enrico. Minimization of a fractional
perimeter-Dirichlet integral functional. Ann. Inst. H. Poincaré Anal. Non
Linéaire 32 32 (2015), no. 4, 901--924.
[282] Caffarelli,
Luis; Silvestre, Luis. Hölder regularity for generalized master equations
with rough kernels. Advances in analysis: the legacy of Elias M. Stein
(C. Fefferman, A.D. Ionescu, D.H. Phong and S. Wainger, Eds.) Princeton
University Press, Princeton, NJ (2014) 63--83.
[281] Caffarelli,
Luis. Calixto Calderón as I knew him. Special functions, partial
differential equations, and harmonic analysis, 13--14, Springer Proc.
Math. Stat., 108 Springer, Cham, 2014.
[280] Caffarelli,
Luis A.; Leitão, Raimundo; Urbano, José Miguel Regularity for anisotropic
fully nonlinear integro-differential equations. Math. Ann. 360
(2014), no. 3-4, 681--714.
[279] Burger, Martin; Caffarelli, Luis;
Markowich, Peter A. Partial differential equation models in the
socio-economic sciences. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 372 (2014), no. 2028, 91--06.
[278] Burger, Martin;
Caffarelli, Luis; Markowich, Peter A.; Wolfram, Marie-Therese On the
asymptotic behavior of a Boltzmann-type price formation model. Commun. Math.
Sci. 12 (2014), no. 7, 1353--1361.
[277] Caffarelli, Luis;
Jin, Tianling; Sire, Yannick; Xiong, Jingang Local Analysis of Solutions of
Fractional Semi-Linear Elliptic Equations with Isolated Singularities. Arch.
Ration. Mech. Anal. 213 (2014), no. 1, 245--268.
[276]
Caffarelli, Luis A.; Crandall, Michael G. Relations between geometric
convexity, doubling measures and property Γ. Proc. Amer. Math. Soc.
142 (2014), no. 7, 2395--2406.
[275] Caffarelli, Luis A.;
Monneau, Regis Counter-example in three dimension and homogenization of
geometric motions in two dimension. Arch. Ration. Mech. Anal. 211
(2014) no. 2, 503--574.
[274] Caffarelli, Luis; González, María del
Mar; Nguyen, Truyen A perturbation argument for a Monge-Ampère type equation
arising in optimal transportation. Arch. Ration. Mech. Anal. 212
(2014), 359--414.
[273] Burger, Martin; Caffarelli, Luis;
Markowich, Peter A.; Wolfram, Marie-Therese On a Boltzmann-type price
formation model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
469 (2013), no. 2157.
[272] Caffarelli, Luis The
homogenization of surfaces and boundaries. Bull. Braz. Math. Soc. (N.S.)
44 (2013) no. 4, 755--775.
[271] Caffarelli, Luis; Valdinoci,
Enrico Regularity properties of nonlocal minimal surfaces via limiting
arguments. Adv. Math. 248 (2013), 843--871.
[270]
Caffarelli, Luis; Figalli, Alessio Regularity of solutions to the
parabolic fractional obstacle problem. J. Reine Angew. Math. 680
(2013), 191--233.
[269] Caffarelli, Luis; Soria, Fernando; Vázquez,
Juan Luis Regularity of solutions of the fractional porous medium flow.
J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1701--1746.
[268] Caffarelli, Luis; Valdinoci, Enrico A priori bounds for
solutions of a nonlocal evolution PDE. Analysis and numerics of partial
differential equation 141--163, Springer INdAM Ser. 4, Springer,
Milan, 2013.
[267] Caffarelli, Luis; Li, Yanyan; Nirenberg,
Louis Some remarks on singular solutions of nonlinear elliptic equations
III: viscosity solutions including parabolic operators. Comm. Pure Appl.
Math. 66 (2013), no. 1, 109--143.
[266] Caffarelli, Luis;
Li, Yanyan; Nirenberg, Louis Some remarks on singular solutions of nonlinear
elliptic equations II: Symmetry and monotonicity via moving planes. Advances
in geometric analysis, 97--105, Adv. Lect. Math. (ALM), 21 Int.
Press, Somerville, MA, 2012.
[265] Caffarelli, Luis A.; Golse,
Francois; Guo, Yan; Kenig, Carlos E.; Vasseur, Alexis Nonlinear partial
differential equations. Selected lecture notes from the School "Topics in
PDE's and Applications 2008. A CRM & FISYMAT Joint Activity" held at the
Universidad de Granada, Granada, April 7--11 and at the Centre de Recerca
Matemàtica in Bellaterra, May 5--9, 2008. Edited by Xavier Cabré and Juan Soler.
Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer
Basel AG, Basel, 2012. viii+149 pp.
[264] Caffarelli, Luis A.;
Vasseur, Alexis The De Giorgi method for nonlocal fluid dynamics.
Nonlinear partial differential equations, 1--38, Adv. Courses Math. CRM
Barcelona, Birkhäuser/Springer Basel AG, Basel, 2012.
[263]
Caffarelli, Luis Non local diffusions, drifts and games. Nonlinear
Partial Differential Equations: The Abel Symposium 2010. Series: Abel Symposia
(H. Holden, K.H. Karlsen, Eds.) 7 Springer-Verlag, Berlin
Heidelberg (2012) 37--52.
[262] Bjorland, C.; Caffarelli, L.;
Figalli, A. Non-local gradient dependent operators. Adv. Math.
230 (2012), no. 4-6, 1859--1894.
[261] Caffarelli, L.; Mellet,
A.; Sire, Y. Traveling waves for a boundary reaction-diffusion equation.
Adv. Math. 230 (2012), no. 2, 433--457.
[260]
Caffarelli, Luis A.; Crandall, Michael G. The problem of two sticks.
Expo. Math. 30 (2012), no. 1, 69--95.
[259] Bjorland,
C.; Caffarelli, L.; Figalli, A. Nonlocal tug-of-war and the infinity
fractional Laplacian. Comm. Pure Appl. Math. 65 (2012), no. 3,
337--380.
[258] Caffarelli, Luis; Vázquez, Juan Luis Nonlinear
porous medium flow with fractional potential pressure. Arch. Ration. Mech.
Anal. 202 (2011), no. 2, 537--565.
[257] Ambrosio, Luigi;
Caffarelli, Luis; Maugeri, Antonino Preface: A beautiful walk in the way of
the understanding. Discrete Contin. Dyn. Syst. 31 (2011), no. 4,
i--vi.
[256] Caffarelli, Luis; Silvestre, Luis The Evans-Krylov
theorem for nonlocal fully nonlinear equations. Ann. of Math. (2)
174 (2011), no. 2, 1163--1187.
[255] Caffarelli, Luis A.;
Markowich, Peter A.; Wolfram, Marie-Therese On a price formation free
boundary model by Lasry and Lions: the Neumann problem. C. R. Math. Acad.
Sci. Paris 349 (2011), no. 15-16, 841--844.
[254]
Caffarelli, Luis A.; Markowich, Peter A.; Pietschmann, Jan-F. On a price
formation free boundary model by Lasry and Lions. C. R. Math. Acad. Sci.
Paris 349 (2011), no. 11-12, 621--624.
[253] Caffarelli,
Luis; Chan, Chi Hin; Vasseur, Alexis Regularity theory for parabolic
nonlinear integral operators. J. Amer. Math. Soc. 24 (2011), no.
3, 849--869.
[252] Caffarelli, Luis; Valdinoci, Enrico Uniform
estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var.
Partial Differential Equations 41 (2011), no. 1-2, 203--240.
[251] Caffarelli, Luis; Silvestre, Luis Regularity results for
nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200
(2011), no. 1, 59--88.
[250] Caffarelli, Luis A.; Vázquez, Juan
Luis Asymptotic behaviour of a porous medium equation with fractional
diffusion. Discrete Contin. Dyn. Syst. 29 (2011), no. 4,
1393--1404.
[249] Caffarelli, Luis; Li, YanYan Preface [Special
issue dedicated to Louis Nirenberg on the occasion of his 85th birthday. Part
III]. Discrete Contin. Dyn. Syst. 30 (2011), no. 2, i--ii.
[248] Caffarelli, Luis A.; Crandall, Michael G. Distance
functions and almost global solutions of eikonal equations. Comm. Partial
Differential Equations 35 (2010), no. 3, 391--414.
[247]
Caffarelli, Luis; Silvestre, Luis Smooth approximations of solutions to
nonconvex fully nonlinear elliptic equations. Nonlinear partial differential
equations and related topics, 67--85, Amer. Math. Soc. Transl. Ser. 2,
229, Amer. Math. Soc., Providence, RI, 2010.
[246]
Caffarelli, Luis A.; Vasseur, Alexis F. The De Giorgi method for
regularity of solutions of elliptic equations and its applications to fluid
dynamics. Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 3,
409--427.
[245] Caffarelli, Luis A.; Vasseur, Alexis Drift
diffusion equations with fractional diffusion and the quasi-geostrophic
equation. Ann. of Math. (2) 171 (2010), no. 3, 1903--1930.
[244] Caffarelli, Luis A.; Roquejoffre, Jean-Michel; Sire,
Yannick Variational problems for free boundaries for the fractional
Laplacian. J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1151--1179.
[243] Caffarelli, L.; Roquejoffre, J.-M.; Savin, O. Nonlocal
minimal surfaces. Comm. Pure Appl. Math. 63 (2010), no. 9,
1111--1144.
[242] Caffarelli, Luis A.; Lin, Fang Hua Analysis on
the junctions of domain walls. Discrete Contin. Dyn. Syst. 28
(2010) no. 3, 915--929.
[241] Caffarelli, Luis A.; Li, YanYan
Preface [Dedicated to Louis Nirenberg on the occasion of his 85th birthday. Part
I]. Discrete Contin. Dyn. Syst. 28 (2010) no. 2, i--ii.
[240] Caffarelli, Luis A.; Li, YanYan Preface [Dedicated to Louis
Nirenberg on the occasion of his 85th birthday. Part II]. Discrete Contin.
Dyn. Syst. 28 (2010) no. 3, i--ii.
[239] Caffarelli, Luis
A.; McCann, Robert J. Free boundaries in optimal transport and Monge-Ampère
obstacle problems. Ann. of Math. (2) 171 (2010), no. 2, 673--730.
[238] Caffarelli, Luis A.; Souganidis, Panagiotis E. Rates of
convergence for the homogenization of fully nonlinear uniformly elliptic pde in
random media. Invent. Math. 180 (2010), no. 2, 301--360.
[237] Athanasopoulos, I.; Caffarelli, L. A. Continuity of the
temperature in boundary heat control problems. Adv. Math. 224
(2010), no. 1, 293--315.
[236] Caffarelli, Luis A.; Karakhanyan, Aram
L. Lectures on gas flow in porous media. Recent developments in real and
harmonic analysis, 133--157, Appl. Numer. Harmon. Anal., Birkhäuser
Boston, Inc., Boston, MA, 2010.
[235] Caffarelli, Luis A.;
Souganidis, Panagiotis E. Convergence of nonlocal threshold dynamics
approximations to front propagation. Arch. Ration. Mech. Anal. 195
(2010), no. 1, 1--23.
[234] Caffarelli, Luis; Silvestre, Luis On
the Evans-Krylov theorem. Proc. Amer. Math. Soc. 138 (2010), no.
1, 263--265.
[233] Caffarelli, Luis A. Some nonlinear problems
involving non-local diffusions. ICIAM 07: 6th International Congress on
Industrial and Applied Mathematics, 43--56, Eur. Math. Soc., Zurich,
2009.
[232] Caffarelli, Luis Surfaces minimizing nonlocal
energies. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9)
Mat. Appl. 20 (2009), no. 3, 281--299.
[231] Caffarelli,
Luis; Li, Yan Yan; Nirenberg, Louis Some remarks on singular solutions of
nonlinear elliptic equations. I. J. Fixed Point Theory Appl. 5
(2009), no. 2, 353--395.
[230] Caffarelli, L. A.; Karakhanyan, A. L.;
Lin, Fang-Hua The geometry of solutions to a segregation problem for
nondivergence systems. J. Fixed Point Theory Appl., 5 (2009), no.
2, 319--351.