• Codeforces Round #202 (Div. 1) D. Turtles dp


    点击打开链接

    题意:给定一张有坏点的网格图,求左上角走到右下角的两条不相交路径的方案数


    思路:

    考虑如果只有一条路该怎么做
    显然 DP 就行了
    那么我们定义 Calc ( x 1 , y 1 , x 2 , y 2 ) 为从 ( x 1 , y 1 ) 走到 ( x 2 , y 2 ) 的方案数
    如果不考虑相交,那么答案就是 Calc (2,1, n , m - 1) * Calc (1, 2, n - 1, m )
    现在考虑相交后,对于一种相交的方案,我们选择最后一个相交的点,将两人从这个点往后的目标反
    转一下,这样可以映射到一条从 (2,1) 走到 ( n - 1, m ) 的路径和一条从 (1, 2) 走到 ( n , m - 1) 的路径
    这样我们就将原先每种不合法的方案和反转后的每种方案建立起了映射
    故答案为 Calc (2,1, n , m - 1) * Calc (1, 2, n - 1, m ) - Calc (2,1, n - 1, m ) * Calc (1, 2, n , m - 1)
    时间复杂度 O ( nm )

    代码:

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 const int mod = 1000000007;
     5 const int maxn = 3e3+10;
     6 
     7 int n,m;
     8 char mp[maxn][maxn];
     9 ll dp[maxn][maxn];
    10 
    11 ll solve(int x,int y, int tx,int ty){
    12     if(mp[x][y] == '#') return 0;
    13     memset(dp,0,sizeof(dp));
    14     dp[x][y] = 1;
    15     for(int i=1; i<=n; i++)
    16         for(int j=1; j<=m; j++){
    17             if(mp[i][j] == '#')
    18                 continue;
    19             dp[i][j] += dp[i-1][j]+dp[i][j-1];
    20             dp[i][j] %= mod;
    21         }
    22 
    23     return dp[tx][ty];
    24 }
    25 
    26 int main(){
    27     scanf("%d%d",&n,&m);
    28     for(int i=1; i<=n; i++) 
    29         scanf("%s",mp[i]+1);
    30     ll ans = (solve(1,2,n-1,m)*solve(2,1,n,m-1)%mod - solve(1,2,n,m-1)*solve(2,1,n-1,m)%mod + mod) % mod;
    31 
    32     cout << ans << endl;
    33 }
  • 相关阅读:
    webstorm编辑器使用
    css深入理解z-index
    vue-cli安装失败问题
    html5 离线存储
    ESXI安装
    文档相似性匹配
    Hibernate基础
    云存储技术
    Signs of a poorly written jQuery plugin 翻译 (Jquery插件开发注意事项,Jquey官方推荐)
    Jquery类级别与对象级别插件开发
  • 原文地址:https://www.cnblogs.com/yxg123123/p/6827729.html
Copyright © 2020-2023  润新知