with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_initializer=tf.glorot_uniform_initializer(),
#weight_initializer=tf.contrib.layers.xavier_initializer_conv2d()#CNN用这个进行初始化,去掉_conv2d用于初始化fc
#weights_initializer= tf.contrib.layers.variance_scaling_initializer( ),
biases_initializer=tf.constant_initializer(0)): net = slim.conv2d(inputs, 64, [11, 11], 4)#步长默认是1,这里改成4了;64是输出特征图个数 net = slim.max_pool2d(net, [3, 3]) net = slim.conv2d(net, 192, [5, 5]) net = slim.max_pool2d(net, [3, 3]) net = slim.conv2d(net, 384, [3, 3]) net = slim.conv2d(net, 384, [3, 3]) net = slim.conv2d(net, 256, [3, 3]) net = slim.max_pool2d(net, [3, 3]) # 数据扁平化 net = slim.flatten(net) net = slim.fully_connected(net, 1024) net = slim.dropout(net, is_training=is_training) net0 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax) net1 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax) net2 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax) net3 = slim.fully_connected(net, num_classes, activation_fn=tf.nn.softmax)
BN层:
net = tf.layers.batch_normalization(net,
trainable=True,#如果是True,就表示这个batch normalization后,会经过一个线性变换
training=is_training)#是训练模式,还是测试模式,测试模式会利用训练模式的均值和方差
L2正则化
方法一
weight_decay = 0.001
base_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits))
l2_loss = weight_decay * tf.add_n([tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()])
loss = base_loss + l2_loss
方法二
x = tf.layers.conv2d(x, 512, (3, 3), padding='same', activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001) base_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits)) l2_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) loss = tf.add_n([base_loss] + l2_loss, name="loss")