• bzoj 1857: [Scoi2010]传送带 三分


    题目链接

    1857: [Scoi2010]传送带

    Time Limit: 1 Sec  Memory Limit: 64 MB
    Submit: 934  Solved: 501
    [Submit][Status][Discuss]

    Description

    在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

    Input

    输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

    Output

    输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

    Sample Input

    0 0 0 100
    100 0 100 100
    2 2 1


    Sample Output

    136.60
     
    三分套三分就可以了
    #include <iostream>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <map>
    #include <set>
    #include <string>
    #include <queue>
    #include <stack>
    #include <bitset>
    using namespace std;
    #define pb(x) push_back(x)
    #define ll long long
    #define mk(x, y) make_pair(x, y)
    #define lson l, m, rt<<1
    #define mem(a) memset(a, 0, sizeof(a))
    #define rson m+1, r, rt<<1|1
    #define mem1(a) memset(a, -1, sizeof(a))
    #define mem2(a) memset(a, 0x3f, sizeof(a))
    #define rep(i, n, a) for(int i = a; i<n; i++)
    #define fi first
    #define se second
    typedef pair<int, int> pll;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int mod = 1e9+7;
    const int inf = 1061109567;
    const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
    double xa, xb, xc, xd, ya, yb, yc, yd, p, q, r;
    double dis(double x1, double y1, double x2, double y2) {
        return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    }
    double ternary(double x, double y) {
        double lx = xc, ly = yc, rx = xd, ry = yd;
        while(fabs(rx-lx)>eps || fabs(ry-ly)>eps) {
            double x1 = lx+(rx-lx)/3, x2 = lx+(rx-lx)/3*2;
            double y1 = ly+(ry-ly)/3, y2 = ly+(ry-ly)/3*2;
            double tmp1 = dis(x, y, x1, y1)/r+dis(x1, y1, xd, yd)/q+dis(x, y, xa, ya)/p;
            double tmp2 = dis(x, y, x2, y2)/r+dis(x2, y2, xd, yd)/q+dis(x, y, xa, ya)/p;
            if(tmp1>tmp2) {
                lx = x1, ly = y1;
            } else {
                rx = x2, ry = y2;
            }
        }
        return dis(x, y, lx, ly)/r+dis(lx, ly, xd, yd)/q+dis(x, y, xa, ya)/p;
    }
    double solve() {
        double lx = xa, rx = xb, ly = ya, ry = yb;
        while(fabs(rx-lx)>eps || fabs(ry-ly)>eps) {
            double x1 = lx+(rx-lx)/3, x2 = lx+(rx-lx)/3*2;
            double y1 = ly+(ry-ly)/3, y2 = ly+(ry-ly)/3*2;
            double tmp1 = ternary(x1, y1), tmp2 = ternary(x2, y2);
            if(tmp1>tmp2) {
                lx = x1, ly = y1;
            } else {
                rx = x2, ry = y2;
            }
        }
        return ternary(lx, ly);
    
    }
    int main()
    {
        cin>>xa>>ya>>xb>>yb>>xc>>yc>>xd>>yd>>p>>q>>r;
        double ans = solve();
        printf("%.2f
    ", ans);
        return 0;
    }
  • 相关阅读:
    jquery绑定点击事件动画BUG
    初步了解XSS攻击
    构造函数、原型对象、原型链之间的关系
    SQA计划和系统测试规程
    第四次scrum冲刺
    第二次Scrum冲刺
    前端面试题整理
    vue 2 简化版数据响应原理
    Vue3.0 简化版数据响应式原理
    git commit规范
  • 原文地址:https://www.cnblogs.com/yohaha/p/5225319.html
Copyright © 2020-2023  润新知