• poj 3169 Layout(差分约束)


    Layout
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6549   Accepted: 3168

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD. 

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27
    
    
    解题思路:
    1、构造差分约束系统:
    A。B距离不超过D则B-A<=D,
    A,B距离至少为D则A-B<=-D.
    2、若有解则求1和N之间的最短路径:
    比如:A-B<=D1 , B-C<=D2, A-C<=D3 不等式相加得:A-C<=min(D3,D1+D2)。而当A-B<=D时。我们建的边是B->A的。所以我们仅仅要求出1到N的最短距离就可以,假设没有最短距离。则输出-2.
    
    
    #include <iostream>
    #include <cstdio>
    #include <queue>
    using namespace std;
    
    const int maxne = 1000000;
    const int maxnn = 1010;
    const int INF = 0x3f3f3f3f;
    struct edge{
        int u , v , d;
        edge(int a = 0 , int b = 0 , int c = 0){
            u = a , v = b , d = c;
        }
    }e[maxne];
    int head[maxnn] , next[maxne] , cnt , dis[maxnn] , vis[maxnn] , vt[maxnn];
    int N , ML , MD;
    
    void add(int u , int v , int d){
        e[cnt] = edge(u , v , d);
        next[cnt] = head[u];
        head[u] = cnt++;
    }
    
    void initial(){
        for(int i = 0; i < maxnn; i++) head[i] = -1 , dis[i] = INF , vis[i] = 0 , vt[i] = 0;
        for(int i = 0; i < maxne; i++) next[i] = -1;
        cnt = 0;
        for(int i = 1; i < N; i++){
            add(0 , i , 0);
            add(i+1 , i , 0);
        }
        add(0 , N , 0);
        dis[0] = 0;
    }
    
    void readcase(){
        int u , v , d;
        while(ML--){
            scanf("%d%d%d" , &u , &v , &d);
            add(u , v , d);
        }
        while(MD--){
            scanf("%d%d%d" , &u , &v , &d);
            add(v , u , -1*d);
        }
    }
    
    bool SPFA(int start){
        queue<int> q;
        q.push(start);
        vt[start]++;
        while(!q.empty()){
            int u = q.front();
            q.pop();
            vis[u] = 0;
            int n = head[u];
            if(vt[u] > N+1){
                return false;
            }
            while(n != -1){
                int v = e[n].v;
                if(dis[v] > dis[u]+e[n].d){
                    dis[v] = dis[u]+e[n].d;
                    if(vis[v] == 0){
                        vt[v]++;
                        q.push(v);
                        vis[v] = 1;
                    }
                }
                n = next[n];
            }
        }
        return true;
    }
    
    void computing(){
        if(!SPFA(0)){
            printf("-1
    ");
        }else{
            for(int i = 0; i < maxnn; i++) dis[i] = INF;
            dis[1] = 0;
            SPFA(1);
            if(dis[N] == INF){
                printf("-2
    ");
            }else{
                printf("%d
    " , dis[N]);
            }
        }
    }
    
    int main(){
        while(scanf("%d%d%d" , &N , &ML , &MD) != EOF){
            initial();
            readcase();
            computing();
        }
        return 0;
    }
    


  • 相关阅读:
    Vue.js的todolist案例(之一)添加&勾选&删除等
    Vue脚手架初次使用
    Vue实例的生命周期_两个重要的钩子
    【云原生】镜像构建实战操作(Dockerfile)
    【云原生】Kubernetes(k8s)——本地存储卷介绍与简单使用(emptyDir,hostPath,local volume)
    【云原生】rsync+inotify数据实时同步介绍与k8s实战应用
    【云原生.大数据】镜像仓库 Harbor 对接 MinIO 对象存储
    【云原生】K8s pod优雅退出(postStart、terminationGracePeriodSeconds、preStop)
    【云原生】Helm 架构和基础语法详解
    【云原生】K8s pod 动态弹性扩缩容 HAP(metricsserver)
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6881761.html
Copyright © 2020-2023  润新知