• 动态规划


    动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的。若用分治法来解决这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费指数时间。然而,不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,从而得到多项式时间算法。为了达到此目的,可以用一个表来记录所有已解决的子问题的答案。不管子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划的基本思想。

    动态规划算法适用于解决最优化问题。通常可以按以下4个步骤设计:(1)找出最优解的性质,并刻画其结构特征。(2)递归地定义最优值。(3)以自底向下的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。

    以下是求解最长公共子序列的算法:

    #include<iostream>
    #include<string>
    #define N 20
    using namespace std;
    int d[N][N];
    int LCSlength(char *a,char *b,int c[][N])
    {
    int alen=strlen(a);
    int blen=strlen(b);
    for(int i=0;i<=alen;i++)
    c[i][0]=0;
    for(int j=0;j<=blen;j++)
    c[0][j]=0;
    for(i=1;i<=alen;i++)
    for(j=1;j<=blen;j++)
    if(a[i-1]==b[j-1])
    c[i][j]=c[i-1][j-1]+1;
    else
    c[i][j]=c[i][j-1]>c[i-1][j]?c[i][j-1]:c[i-1][j];
    return c[alen][blen];
    }
    char *LCS(char *s,char *a,char *b)
    {
    int c[N][N];
    int i=strlen(a);
    int j=strlen(b);
    int k=LCSlength(a,b,c);
    s[k]='';
    while(k>0)
    {
    if(c[i][j]==c[i-1][j])
    i--;
    else if(c[i][j]==c[i][j-1])
    j--;
    else
    {
    s[--k]=a[i-1];
    i--;
    j--;
    }
    }
    return s;
    }
    void main()
    {
    char *s=new char[N];
    char s1[N];
    char s2[N];
    cout<<"请输入第一个字符串:";
    cin>>s1;
    cout<<"请输入第二个字符串:";
    cin>>s2;
    cout<<"最长的公共子序列为:"<<LCS(s,s1,s2)<<endl;
    delete s;
    cout<<"长度为" <<LCSlength(s1,s2,d)<<endl;
    }

  • 相关阅读:
    想做的事情
    js学习笔记2(5章操作方法)
    js学习笔记1(变量、作用域、内存)
    输入框去除默认的文字,jquery方法
    同类型元素,只有一个被选中js
    淘宝分类常见---部分显示和全部显示的js效果
    关于游戏提名信息项目的总结
    20174310隋润起网络对抗免考报告
    2019-2020-2 20174310 隋润起《网络对抗技术》Exp9 Web安全基础
    2019-2020-2 20174310隋润起《网络对抗技术》Exp8 Web基础
  • 原文地址:https://www.cnblogs.com/yinson/p/5428949.html
Copyright © 2020-2023  润新知