求解组合数 C (n, k) % p 的三种方法:
方法1(逆元求法):
const int N = 1e5 + 10;
const int MOD = 1e9 + 7;
int f[N], finv[N], inv[N];
void init(void) { //要求MOD是质数,预处理时间复杂度O(n)
inv[1] = 1;
for (int i=2; i<N; ++i) {
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD%i] % MOD;
}
f[0] = finv[0] = 1;
for (int i=1; i<N; ++i) {
f[i] = f[i-1] * 1ll * i % MOD;
finv[i] = finv[i-1] * 1ll * inv[i] % MOD;
}
}
方法2:C(n,m)= C(n,n-m)= C(n-1,m-1)+C(n-1,m)
const int N = 2000 + 10;
const int MOD = 1e9 + 7;
int comb[N][N];
void init(void) { //对MOD没有要求,预处理时间复杂度O(n^2)
for (int i=0; i<N; ++i) {
comb[i][i] = comb[i][0] = 1;
for (int j=1; j<i; ++j) {
comb[i][j] = comb[i-1][j] + comb[i-1][j-1];
if (comb[i][j] >= MOD) {
comb[i][j] -= MOD;
}
}
}
}
方法3(Lucas定理,大组合数取模, HDOJ 3037为例):
ll f[N];
void init(int p) { //f[n] = n!
f[0] = 1;
for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
}
ll pow_mod(ll a, ll x, int p) {
ll ret = 1;
while (x) {
if (x & 1) ret = ret * a % p;
a = a * a % p;
x >>= 1;
}
return ret;
}
ll Lucas(ll n, ll k, int p) { //C (n, k) % p
ll ret = 1;
while (n && k) {
ll nn = n % p, kk = k % p;
if (nn < kk) return 0; //inv (f[kk]) = f[kk] ^ (p - 2) % p
ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
n /= p, k /= p;
}
return ret;
}
int main(){
init (p);
printf ("%I64d
", Lucas (n + m, n, p));
return 0;
}