• python数据结构_大顶堆和小顶堆


    大顶堆和小顶堆

    相关介绍可参看:北京大学空地学院数据结构与算法 第六章 6.8.2.2 小节

    代码实现如下

    class Heap:
        """二叉堆的实现  小顶堆"""
        def __init__(self):
            self.heapList = [0]   # 默认一个 0 做占位,使得根节点的索引在 1 上
            self.currentSize = 0    # 最大节点的索引位置
    
        def perUp(self, i):
            """将小节点逐步上升"""
            while i // 2 > 0:
                if self.heapList[i] < self.heapList[i // 2]:
                    self.heapList[i], self.heapList[i // 2] = self.heapList[i // 2], self.heapList[i]
                i = i // 2
    
        def insert(self, k):
            """插入节点"""
            self.heapList.append(k)
            self.currentSize += 1
            self.perUp(self.currentSize)
    
        def minChild(self, i):
            """获取左右两个子节点里较小的那个子节点的索引"""
            if i * 2 + 1 > self.currentSize:  # 右子节点超出节点数量
                return i * 2
            else:
                if self.heapList[i * 2] < self.heapList[i * 2 + 1]:
                    return i * 2
                else:
                    return i * 2 + 1
    
        def perDown(self, i):
            """将节点下沉到合适位置"""
            while (i * 2) <= self.currentSize:  # 说明有子节点
                mc = self.minChild(i)
                if self.heapList[i] > self.heapList[mc]:
                    self.heapList[i], self.heapList[mc] = self.heapList[mc], self.heapList[i]
                i = mc
    
        def delMin(self):
            """删除小节点"""
            retval = self.heapList[1]  # 删除索引位置为 1 的节点
            self.heapList[1] = self.heapList[self.currentSize]
            self.heapList.pop()
            self.currentSize -= 1
            self.perDown(1)
            return retval
    
        def buildHeap(self, alist):
            i = len(alist) // 2
            self.currentSize = len(alist)
            self.heapList += alist[:]
            while i > 0:
                self.perDown(i)
                i -= 1
    
    
    
    class HeapList(object):
        """大顶推"""
        def __init__(self):
            self.heaplist = [0]
            self.size = 0
    
        def buildHeap(self, alist):
            i = len(alist) // 2
            self.size = len(alist)
            self.heaplist += alist[:]
            while i > 0:
                self.percDown(i)
                i -= 1
    
        def percUp(self, i):
            while i // 2 > 0:
                if self.heaplist[i] > self.heaplist[i // 2]:
                    self.heaplist[i], self.heaplist[i // 2] = self.heaplist[i // 2], self.heaplist[i]
                i //= 2
    
        def insert(self, k):
            self.heaplist.append(k)
            self.size += 1
            self.percUp(self.size)
    
        def maxChild(self, i):
            if i * 2 + 1 > self.size:
                return i * 2
            else:
                if self.heaplist[i * 2] > self.heaplist[i * 2 + 1]:
                    return i * 2
                else:
                    return i * 2 + 1
    
        def percDown(self, i):
            while i * 2 <= self.size:
                mc = self.maxChild(i)
                if self.heaplist[i] < self.heaplist[mc]:
                    self.heaplist[i], self.heaplist[mc] = self.heaplist[mc], self.heaplist[i]
                i = mc
    
        def delMax(self):
            retval = self.heaplist[1]
            self.heaplist[1] = self.heaplist[self.size]
            self.size -= 1
            self.heaplist.pop()
            self.percDown(1)
            return retval
    
    
    # 采用大顶堆的方式,制作容量为 k 的大顶堆,向堆中添加元素时,比堆顶值小,就弹出堆顶,并将此元素添加进堆。这就保证,最后遍历完成后,
    # 我们获得了比堆顶小的 k-1 个最小值
    # 时间复杂度 O(nlogK)  因为只维护 K 大小的堆
    class Solution:
        def getLeastNumbers(self, arr, k):
            if k == 0:
                return []
            heaplist = HeapList()
            heaplist.buildHeap(arr[:k])
            for i in arr[k: ]:
                if i < heaplist.heaplist[1]:
                    heaplist.delMax()
                    heaplist.insert(i)
            return heaplist.heaplist[1:]
    
    
    if __name__ == '__main__':
        solution = Solution()
        arrlist = [1, 2, 3, 4, 5, 6, 7, 8]
        res = solution.getLeastNumbers(arrlist, 3)
        print(res)
    
    
    
  • 相关阅读:
    Hadoop与分布式开发
    Hadoop体系结构
    MapReduce基本流程与设计思想初步
    hadoop集群启动时DataNode节点启动失败
    初识Hadoop
    国家标准免费下载网站大全
    Effective C++ 之 Item 3:尽可能使用 const
    Effective C++ 之 Item 2:尽量以 const, enum, inline 替换 #define
    Effective C++ 之 Item 1: 视C++为一个语言联邦
    Effective C++ 之 0 导读(Introduction)
  • 原文地址:https://www.cnblogs.com/yezigege/p/13386408.html
Copyright © 2020-2023  润新知