• 多元链法则(1)


    设$E$是$\mathbf{R}$的子集,$F$是$\mathbf{R}^m$的子集,设$f:E\to F$是函数,$g:F\to \mathbf{R}$是另一个函数.设$x_0$是$E$的内点,假设$f$在$x_0$处可微,且$f(x_0)$是$F$的内点,还假设$g$在$f(x_0)$处可微,那么$g\circ f:E\to\mathbf{R}^p$在$x_0$处可微,且
    \begin{equation}
    \label{eq:16.13.22}
    (g\circ f)'(x_0)=g'(f(x_0))f'(x_0)
    \end{equation}

    证明:设点$f(x_0)$的坐标是$(a_1,\cdots,a_m)$. 则
    \begin{equation}
    \label{eq:16.22.29}
    g'(f(x_0))(a_1,\cdots,a_m)^T=a_{1}\frac{\partial g}{\partial x_1}(f(x_0))+\cdots +a_m \frac{\partial g}{\partial x_m}(f(x_0))
    \end{equation}
    因此
    \begin{equation}
    \label{eq:16.23.32}
    g'(f(x_0))=\begin{pmatrix}
    \frac{\partial g}{\partial x_1}(f(x_0))&\cdots&\frac{\partial g}{\partial x_m}(f(x_0))
    \end{pmatrix}
    \end{equation}

    因此
    \begin{equation}
    \label{eq:16.00.22}
    g'(f(x_0))f'(x_0)= \begin{pmatrix}\frac{\partial g}{\partial x_1}(f(x_0))&\cdots&\frac{\partial g}{\partial x_m}(f(x_0))\end{pmatrix}f'(x_0)
    \end{equation}



    \begin{equation}
    \label{eq:16.22.6}
    (g\circ f)'(x_0)=\lim_{\Delta x\to 0;\Delta x\neq 0}\frac{(g\circ
    f)(x_0+\Delta x)-(g\circ f)(x_0)}{\Delta x}
    \end{equation}
    令$f(x_0+\Delta x)=f(x_0)+\varepsilon(\Delta x)$,其中当$\Delta x\to 0$时,$\varepsilon(\Delta x)\to 0$.则\ref{eq:16.22.6}可以变为
    \begin{equation}
    \label{eq:16.23.7}
    \lim_{\Delta x\to 0;\Delta x\neq 0} \frac{g(f(x_0)+\varepsilon(\Delta x))-g(f(x_0))}{\Delta x}
    \end{equation}
    设$\varepsilon(\Delta x)=(\Delta x_1,\cdots,\Delta x_m)$.我们变\ref{eq:16.23.7}式为
    \begin{equation}
    \label{eq:17.11.57}
    \lim_{\Delta x\to 0;\Delta x\neq 0}\frac{g((a_1+\Delta
    x_1,\cdots,a_m+\Delta x_m))-g((a_1,\cdots,a_m))}{\Delta x}
    \end{equation}
    根据中间人技巧,易得当$\Delta x_1,\cdots,\Delta x_n\neq 0$时,可以将\ref{eq:17.11.57}变成\ref{eq:16.00.22}(为什么?)当存在$i$,使得$\Delta x_i=0$时,处理方法和单变元链法则一样.完毕.

  • 相关阅读:
    16.小程序request请求
    15.小程序接入百度地图获取地理位置
    14. 微信小程序之wxss
    13.小程序视图层的模板
    es6字符串几个方法的理解
    记一次仿京东首页的轮播图效果
    ES6中Promise使用方法
    关于新版VS编辑环境下提示fopen不安全的问题报C4996错误的解决办法
    css布局拓展
    HTML的表单元素
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827899.html
Copyright © 2020-2023  润新知