• Eigen 矩阵基本运算


    矩阵和向量的运算
    提供一些概述和细节:关于矩阵、向量以及标量的运算。

    1. 介绍

    Eigen提供了matrix/vector的运算操作,既包括重载了c++的算术运算符+/-/*,也引入了一些特殊的运算比如点乘dot、叉乘cross等。

    对于Matrix类(matrix和vectors)这些操作只支持线性代数运算,比如:matrix1*matrix2表示矩阵的乘机,vetor+scalar是不允许的。如果你想执行非线性代数操作,请看下一篇(暂时放下)。

    2. 加减

    左右两侧变量具有相同的尺寸(行和列),并且元素类型相同(Eigen不自动转化类型)操作包括:

    二元运算 + 如a+b
    二元运算 - 如a-b
    一元运算 - 如-a
    复合运算 += 如a+=b
    复合运算 -= 如a-=b

     1 #include <iostream>
     2  
     3 #include <Eigen/Dense>
     4  
     5 using namespace Eigen;
     6  
     7 int main()
     8  
     9 {
    10  
    11   Matrix2d a;
    12  
    13   a << 1, 2,
    14  
    15        3, 4;
    16  
    17   MatrixXd b(2,2);
    18  
    19   b << 2, 3,
    20  
    21        1, 4;
    22  
    23   std::cout << "a + b =\n" << a + b << std::endl;
    24  
    25   std::cout << "a - b =\n" << a - b << std::endl;
    26  
    27   std::cout << "Doing a += b;" << std::endl;
    28  
    29   a += b;
    30  
    31   std::cout << "Now a =\n" << a << std::endl;
    32  
    33   Vector3d v(1,2,3);
    34  
    35   Vector3d w(1,0,0);
    36  
    37   std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
    38  
    39 }

    输出:

    a + b =

    3 5

    4 8

    a - b =

    -1 -1

    2 0

    Doing a += b;

    Now a =

    3 5

    4 8

    -v + w - v =

    -1

    -4

    -6

    3. 标量乘法和除法

    乘/除标量是非常简单的,如下:

    二元运算 * 如matrix*scalar
    二元运算 * 如scalar*matrix
    二元运算 / 如matrix/scalar
    复合运算 *= 如matrix*=scalar
    复合运算 /= 如matrix/=scalar

     1 #include <iostream>
     2  
     3 #include <Eigen/Dense>
     4  
     5 using namespace Eigen;
     6  
     7 int main()
     8  
     9 {
    10  
    11   Matrix2d a;
    12  
    13   a << 1, 2,
    14  
    15        3, 4;
    16  
    17   Vector3d v(1,2,3);
    18  
    19   std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;
    20  
    21   std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;
    22  
    23   std::cout << "Doing v *= 2;" << std::endl;
    24  
    25   v *= 2;
    26  
    27   std::cout << "Now v =\n" << v << std::endl;
    28  
    29 }

    结果

    a * 2.5 =

    2.5 5

    7.5 10

    0.1 * v =

    0.1

    0.2

    0.3

    Doing v *= 2;

    Now v =

    2

    4

    6

    4. 表达式模板

    这里简单介绍,在高级主题中会详细解释。在Eigen中,线性运算比如+不会对变量自身做任何操作,会返回一个“表达式对象”来描述被执行的计算。当整个表达式被评估完(一般是遇到=号),实际的操作才执行。

    这样做主要是为了优化,比如

    VectorXf a(50), b(50), c(50), d(50);

    ...

    a = 3*b + 4*c + 5*d;

    Eigen会编译这段代码最终遍历一次即可运算完成。

    for(int i = 0; i < 50; ++i)

    a[i] = 3*b[i] + 4*c[i] + 5*d[i];

    因此,我们不必要担心大的线性表达式的运算效率。

    5. 转置和共轭

    表示transpose转置

    表示conjugate共轭

    表示adjoint(共轭转置) 伴随矩阵

    1 MatrixXcf a = MatrixXcf::Random(2,2);
    2  
    3 cout << "Here is the matrix a\n" << a << endl;
    4  
    5 cout << "Here is the matrix a^T\n" << a.transpose() << endl;
    6  
    7 cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
    8  
    9 cout << "Here is the matrix a^*\n" << a.adjoint() << endl;

    输出

    Here is the matrix a

    (-0.211,0.68) (-0.605,0.823)

    (0.597,0.566) (0.536,-0.33)

    Here is the matrix a^T

    (-0.211,0.68) (0.597,0.566)

    (-0.605,0.823) (0.536,-0.33)

    Here is the conjugate of a

    (-0.211,-0.68) (-0.605,-0.823)

    (0.597,-0.566) (0.536,0.33)

    Here is the matrix a^*

    (-0.211,-0.68) (0.597,-0.566)

    (-0.605,-0.823) (0.536,0.33)

    对于实数矩阵,conjugate不执行任何操作,adjoint等价于transpose。

    transpose和adjoint会简单的返回一个代理对象并不对本省做转置。如果执行 b=a.transpose() ,a不变,转置结果被赋值给b。如果执行 a=a.transpose() Eigen在转置结束之前结果会开始写入a,所以a的最终结果不一定等于a的转置。

    1 Matrix2i a; a << 1, 2, 3, 4;
    2  
    3 cout << "Here is the matrix a:\n" << a << endl;
    4  
    5 a = a.transpose(); // !!! do NOT do this !!!
    6  
    7 cout << "and the result of the aliasing effect:\n" << a << endl;

    Here is the initial matrix a:

    1 2 3

    4 5 6

    and after being transposed:

    1 4

    2 5

    3 6

    6. 矩阵-矩阵的乘法和矩阵-向量的乘法

    向量也是一种矩阵,实质都是矩阵-矩阵的乘法。

    二元运算 *如a*b
    复合运算 *=如a*=b

     1 #include <iostream>
     2  
     3 #include <Eigen/Dense>
     4  
     5 using namespace Eigen;
     6  
     7 int main()
     8  
     9 {
    10  
    11   Matrix2d mat;
    12  
    13   mat << 1, 2,
    14  
    15          3, 4;
    16  
    17   Vector2d u(-1,1), v(2,0);
    18  
    19   std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
    20  
    21   std::cout << "Here is mat*u:\n" << mat*u << std::endl;
    22  
    23   std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;
    24  
    25   std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
    26  
    27   std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;
    28  
    29   std::cout << "Let's multiply mat by itself" << std::endl;
    30  
    31   mat = mat*mat;
    32  
    33   std::cout << "Now mat is mat:\n" << mat << std::endl;
    34  
    35 }

    输出

    Here is mat*mat:

    7 10

    15 22

    Here is mat*u:

    1

    1

    Here is u^T*mat:

    2 2

    Here is u^T*v:

    -2

    Here is u*v^T:

    -2 -0

    2 0

    Let's multiply mat by itself

    Now mat is mat:

    7 10

    15 22

    m=m*m并不会导致别名问题,Eigen在这里做了特殊处理,引入了临时变量。实质将编译为:

    tmp = m*m

    m = tmp

    如果你确定矩阵乘法是安全的(并没有别名问题),你可以使用noalias()函数来避免临时变量 c.noalias() += a*b 。

    7. 点运算和叉运算

    dot()执行点积,cross()执行叉积,点运算得到1*1的矩阵。当然,点运算也可以用u.adjoint()*v来代替。

     1 #include <iostream>
     2  
     3 #include <Eigen/Dense>
     4  
     5 using namespace Eigen;
     6  
     7 using namespace std;
     8  
     9 int main()
    10  
    11 {
    12  
    13   Vector3d v(1,2,3);
    14  
    15   Vector3d w(0,1,2);
    16  
    17   cout << "Dot product: " << v.dot(w) << endl;
    18  
    19   double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
    20  
    21   cout << "Dot product via a matrix product: " << dp << endl;
    22  
    23   cout << "Cross product:\n" << v.cross(w) << endl;
    24  
    25 }

    输出

    Dot product: 8

    Dot product via a matrix product: 8

    Cross product:

    1

    -2

    1

    注意:点积只对三维vector有效。对于复数,Eigen的点积是第一个变量共轭和第二个变量的线性积。

    8. 基础的归约操作

    Eigen提供了而一些归约函数:sum()、prod()、maxCoeff()和minCoeff(),他们对所有元素进行操作。

     1 #include <iostream>
     2  
     3 #include <Eigen/Dense>
     4  
     5 using namespace std;
     6  
     7 int main()
     8  
     9 {
    10  
    11   Eigen::Matrix2d mat;
    12  
    13   mat << 1, 2,
    14  
    15          3, 4;
    16  
    17   cout << "Here is mat.sum():       " << mat.sum()       << endl;
    18  
    19   cout << "Here is mat.prod():      " << mat.prod()      << endl;
    20  
    21   cout << "Here is mat.mean():      " << mat.mean()      << endl;
    22  
    23   cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;
    24  
    25   cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl;
    26  
    27   cout << "Here is mat.trace():     " << mat.trace()     << endl;
    28  
    29 }

    输出

    Here is mat.sum(): 10

    Here is mat.prod(): 24

    Here is mat.mean(): 2.5

    Here is mat.minCoeff(): 1

    Here is mat.maxCoeff(): 4

    Here is mat.trace(): 5

    trace表示矩阵的迹,对角元素的和等价于 a.diagonal().sum() 。

    minCoeff和maxCoeff函数也可以返回结果元素的位置信息。

     1 Matrix3f m = Matrix3f::Random();
     2  
     3   std::ptrdiff_t i, j;
     4  
     5   float minOfM = m.minCoeff(&i,&j);
     6  
     7   cout << "Here is the matrix m:\n" << m << endl;
     8  
     9   cout << "Its minimum coefficient (" << minOfM
    10  
    11        << ") is at position (" << i << "," << j << ")\n\n";
    12  
    13   RowVector4i v = RowVector4i::Random();
    14  
    15   int maxOfV = v.maxCoeff(&i);
    16  
    17   cout << "Here is the vector v: " << v << endl;
    18  
    19   cout << "Its maximum coefficient (" << maxOfV
    20  
    21        << ") is at position " << i << endl;

    输出

    Here is the matrix m:

    0.68 0.597 -0.33

    -0.211 0.823 0.536

    0.566 -0.605 -0.444

    Its minimum coefficient (-0.605) is at position (2,1)

     

    Here is the vector v: 1 0 3 -3

    Its maximum coefficient (3) is at position 2

    9. 操作的有效性

    Eigen会检测执行操作的有效性,在编译阶段Eigen会检测它们,错误信息是繁冗的,但错误信息会大写字母突出,比如:

    1 Matrix3f m;
    2  
    3 Vector4f v;
    4  
    5 v = m*v;      // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES

    当然动态尺寸的错误要在运行时发现,如果在debug模式,assertions会触发后,程序将崩溃。

    1 MatrixXf m(3,3);
    2  
    3 VectorXf v(4);
    4  
    5 v = m * v; // Run-time assertion failure here: "invalid matrix product"
  • 相关阅读:
    博客搬到CSDN了,以后就老实的呆在这儿吧~~
    Android对px和dip进行尺寸转换的方法
    获取Java的32位MD5实现
    GDI+ Hello World
    WTL对话框添加背景图片
    WTL对话框添加背景图片
    WTL设置对话框背影色
    WTL设置对话框背影色
    使用CStatic显示图片(bmp、ico、png)
    WTL Picture Control显示图片
  • 原文地址:https://www.cnblogs.com/ybqjymy/p/16450957.html
Copyright © 2020-2023  润新知