• CF Covered Path (贪心)


    Covered Path
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2 meters per second. We know that this section of the route took exactly t seconds to pass.

    Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.

    Input

    The first line contains two integers v1 and v2 (1 ≤ v1, v2 ≤ 100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.

    The second line contains two integers t (2 ≤ t ≤ 100) — the time when the car moves along the segment in seconds, d (0 ≤ d ≤ 10) — the maximum value of the speed change between adjacent seconds.

    It is guaranteed that there is a way to complete the segment so that:

    • the speed in the first second equals v1,
    • the speed in the last second equals v2,
    • the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d.
    Output

    Print the maximum possible length of the path segment in meters.

    Sample test(s)
    input
    5 6
    4 2
    output
    26
    input
    10 10
    10 0
    output
    100





    哈哈,终于可以完全理解的A出一道贪心题了。假设每个点的速度是V,剩余的时间是T_S,加速量是X,那么需要满足 V + X <= V_2 + T_S * d,以此来更新每个点的速度就行。
     1 #include <iostream>
     2 #include <cstdio>
     3 using    namespace    std;
     4 
     5 int    main(void)
     6 {
     7     int    v_1,v_2,t,d;
     8     int    sum = 0;
     9 
    10     cin >> v_1 >> v_2;
    11     cin >> t >> d;
    12     sum += v_1;
    13 
    14     int    v = v_1;
    15     for(int i = 2;i <= t;i ++)
    16         for(int j = d;j >= -d;j --)
    17             if(v + j <= v_2 + (t - i) * d)
    18             {
    19                 v += j;
    20                 sum += v;
    21                 break;
    22             }
    23     cout << sum << endl;
    24 
    25     return    0;
    26 }
  • 相关阅读:
    数据结构-循环队列(Python实现)
    数据结构-堆栈和队列最简单的实现(Python实现)
    数据结构-双向链表(Python实现)
    ArrayList集合对象的sort()方法
    编写泛型
    super通配符
    面向对象(上)综合练习1:银行存取
    面向对象(上)综合练习1:Account和Customer
    泛型之extends通配符
    Comparable<T>泛型接口之实现按name或者age进行排序
  • 原文地址:https://www.cnblogs.com/xz816111/p/4442864.html
Copyright © 2020-2023  润新知