• 主席树K-th Number


    /*K-th Number
    Time Limit: 20000MS Memory Limit: 65536K
    Total Submissions: 44535 Accepted: 14779
    Case Time Limit: 2000MS
    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).
    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.
    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3
    Sample Output

    5
    6
    3*/
    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    int ls[8000008],rs[8000008],sum[8000008],root[100008],num[100009],n,m,hash[100009];
    int tmp,size,a[100008];
    void jia(int l,int r,int x,int &y,int v)
    {
    y=++size;
    sum[y]=sum[x]+1;
    if(l==r)
    return;
    ls[y]=ls[x];
    rs[y]=rs[x];
    int mid=(l+r)>>1;
    if(v<=mid)
    jia(l,mid,ls[x],ls[y],v);
    else
    jia(mid+1,r,rs[x],rs[y],v);
    return;
    }
    int xun(int L,int R,int V)
    {
    int x=root[L-1],y=root[R],l=1,r=tmp,mid=(l+r)/2;
    for(;l!=r;)
    if(sum[ls[y]]-sum[ls[x]]>=V)
    {
    x=ls[x];
    y=ls[y];
    r=mid;
    mid=(l+r)>>1;
    }
    else
    {
    V-=sum[ls[y]]-sum[ls[x]];
    x=rs[x];
    y=rs[y];
    l=mid+1;
    mid=(l+r)>>1;
    }
    return l;
    }
    int main()
    {
    scanf("%d%d",&n,&m);
    for(int i=0;i<n; i++)
    {
    scanf("%d",&num[i]);
    a[i+1]=num[i];
    }
    sort(num,num+n);
    hash[++tmp]=num[0];
    for(int i=1;i<n;i++)
    if(hash[tmp]!=num[i])
    hash[++tmp]=num[i];
    for(int i=1;i<=n;i++)
    jia(1,tmp,root[i-1],root[i],lower_bound(hash+1,hash+n+1,a[i])-hash);
    for(int i=0;i<m;i++)
    {
    int l,r,v;
    scanf("%d%d%d",&l,&r,&v);
    printf("%d ",hash[xun(l,r,v)]);
    }
    return 0;
    }

  • 相关阅读:
    201871010106丁宣元 《面向对象程序设计(java)》第八周学习总结
    201871010106丁宣元 《面向对象程序设计(java)》第十一周学习总结
    201871010106丁宣元 《面向对象程序设计(java)》第十周学习总结
    学习:数据结构树状数组
    学习:数据结构线段树
    学习:数据结构哈希
    学习:数据结构单调栈
    学习:数学欧拉定理与扩展欧拉定理
    CRUD全栈式编程架构之导入导出的设计
    CRUD全栈式编程架构之服务层的设计
  • 原文地址:https://www.cnblogs.com/xydddd/p/5144142.html
Copyright © 2020-2023  润新知