Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
Solution 1:
Time: O(M * N)
class Solution { public boolean searchMatrix(int[][] matrix, int target) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return false; } for (int[] arr: matrix) { if (binarySearch(arr, target)) { return true; } } return false; } private boolean binarySearch(int[] array, int target) { int start = 0, end = array.length - 1; while (start <= end) { int mid = start + (end - start) / 2; if (array[mid] == target) { return true; } else if (array[mid] < target) { start = mid + 1; } else { end = mid - 1; } } return false; } }
Solution 2:
Time: O(M + N)
class Solution { public boolean searchMatrix(int[][] matrix, int target) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return false; } // check from upper right corner int row = 0, col = matrix[0].length - 1; while (col >= 0 && row <= matrix.length - 1) { if (matrix[row][col] == target) { return true; } else if (matrix[row][col] < target) { row += 1; } else { col -= 1; } } return false; } }