题目传送门(内部题143)
输入格式
输入文件的第一行为三个整数$n,m,t$。其中$t$是数据类型。
接下来$m$行,每行两个正整数$u,v$,表示图中的一条边。数据保证不存在重边或自环的情况。
输入数据的最后一行是$n$个正整数,表示$W_1,W_2,...,W_n$。
输出格式
输出文件共包含两行两个整数。第一行,若$t eq 2$,则你需要输出最大的联合权值(无则输出$-1$),否则输出$0$;第二行,若$t eq 1$,则你需要输出联合权值的总和,否则输出$0$。
样例
样例输入:
4 4 3
1 2
1 3
2 3
2 4
100 1 100 1
样例输出:
100
400
数据范围与提示
对于$10\%$的数据,满足$nleqslant 100$。
对于另$30\%$的数据,满足$t=1$。
对于另$30\%$的数据,满足$t=1$。
对于$100\%$的数据,满足$1leqslant n,mleqslant 30,000,1leqslant tleqslant 3,1leqslant W_ileqslant 100$。
题解
暴力$95$,然而我读错题了……
只要$w$不一样就行,然而我还以为是一道$SB$题(不过本来也是)。
发现求和很好求,考虑求最大值。
去**正解。
考虑剪枝。
可以把连向一个点的所有点按点权从大到小排序,枚举点的时候找到最先的一组$break$就好了。
时间复杂度:$Theta(n^2)$。
期望得分:$10$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int n,m,t;
int w[30001];
bitset<30000> bit[30001];
vector<int> vec[30001];
int mx;
long long ans;
bool cmp(int a,int b){return w[a]>w[b];}
int main()
{
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
bit[u][v]=bit[v][u]=1;
}
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
for(int i=1;i<=n;i++)sort(vec[i].begin(),vec[i].end(),cmp);
for(int x=1;x<=n;x++)
for(int i=0;i<vec[x].size();i++)
for(int j=i+1;j<vec[x].size();j++)
{
if(bit[vec[x][i]][vec[x][j]])continue;
mx=max(mx,w[vec[x][i]]*w[vec[x][j]]);
break;
}
for(int x=1;x<=n;x++)
{
int l=0,r=0;
for(int i=0;i<vec[x].size();i++)
{
ans-=1LL*w[x]*w[vec[x][i]]*(bit[x]&bit[vec[x][i]]).count();
l+=w[vec[x][i]];r+=w[vec[x][i]]*w[vec[x][i]];
}
ans+=1LL*l*l-r;
}
printf("%d
%lld
",(t==2)?0:mx,(t==1)?0:ans);
return 0;
}
rp++