In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
解题思路:这个题目求的就是一串数的逆序数,但是必须用到归并排序,归并:关键在于如何把两个有序表合成一个,每次只需要把两个序列的最小元素加以比较,删除其中的较小元素并加入合并后的新表即可。思路:先把序列分成元素个数尽量相等的两半,r,l在两边尽量控制逆序对的个数,对于右边的每个数,统计左边比它大的个数。
程序代码:
#include<iostream> #include<cstdio> using namespace std; long long cnt; int A[500005],T[500005]; void merge_sort(int l,int r) { if(r-l>1) { int m=l+(r-l)/2; int p=l,q=m,i=l; merge_sort(l,m); merge_sort(m,r); while(p<m || q<r) { if(q>=r || (p<m && A[p]<=A[q]) ) T[i++]=A[p++]; else { T[i++]=A[q++]; cnt+=m-p; } } for(i=l;i<r;++i) A[i]=T[i]; } } int main() { int n; while(cin>>n&&n) { cnt=0; for(int i=0;i<n;++i) scanf("%d",&A[i]); merge_sort(0,n); cout<<cnt<<endl; } return 0; }